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Abstract— To learn more about attack patterns and at-
tacker behavior, the concept of electronic decoys, i.e. net-
work resources (computers, routers, switches, etc.) de-
ployed to be probed, attacked, and compromised, is used
in the area of IT security under the name honeypots. These
electronic baits lure in attackers and help in assessment of
vulnerabilities.

Because honeypots are more and more deployed within
computer networks, malicious attackers start to devise tech-
niques to detect and circumvent these security tools. This
paper will explain how an attacker typically proceeds in or-
der to attack this kind of systems. We will introduce several
techniques and present diverse tools and techniques which
help attackers. In addition, we present several methods to
detect suspicious environments (e.g. virtual machines and
presence of debuggers). The article aims at showing the
limitation of current honeypot-based research. After a brief
theoretical introduction, we present several technical exam-
ples of different methodologies.

I. Introduction

Often we have a lack of precise information dealing with
attacks on the Internet. In most cases, we just see the
results of attacks against networks or specific computers.
For example, after a successful attack we just see that the
compromised computer attacks further computers within
the network. But analyzing how the attacker proceeded
is a difficult and time-consuming task. In addition, we
do not have precise quantitative predications of attacks
against computer systems and the tools, tactics, and mo-
tives involved in computer and network attacks are often
not known in detail.

To change this, the concept of electronic decoys has been
applied to the area of IT security recently. The term hon-
eypot usually refers to an entity with certain features that
make it especially attractive and can lure attackers into
its vicinity. Honeypots are electronic bait, i.e. network
resources (computers, routers, switches, etc.) deployed to
be probed, attacked, and compromised. These systems run
special software which permanently collects data about the
system and greatly aids in post-incident computer and net-
work forensics. A honeypot is usually a computer system
with no conventional task in the network. This assumption
aids in detection of incidents: Every interaction with the
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system is suspicious and could point to a possibly malicious
action. This zero false-positives rates is a clear advantage of
honeypots in contrast to intrusion detection systems (IDS).
Several honeypots can be assembled into networks of hon-
eypots called honeynets. Because of the wealth of data
collected through them, honeynets are considered a use-
ful tool to learn more about attack patterns and attacker
behavior in communication networks. A detailed introduc-
tion to honeypots can for example be found in [1].

In contrast to this, malicious attackers (so called black-
hats) try to devise new techniques to detect and circum-
vent honeypots and other suspicious environments. The at-
tackers probably do not want that someone observes their
action since this could lead to information leakage. Fur-
thermore, they do not want to disclose their exploits and
methods. For instance, if they intrude a system using a
non-publicly known flaw (called a 0-day), they do not want
to share this knowledge since it will lose much of its value
as soon as a patch is available. Moreover, once an attacker
compromised a system, he wants to conceal his actions,
whatever they can be: downloading and using new tools,
chatting on IRC, and so on.

Very similar to this arms-race between people who run
honeynets on the one side and blackhats on the other side
is the area of steganography. It’s goal is to hide the exis-
tence of a communication channel between several parties.
Steganography came back to the front of the stage a few
years ago, when Simmons introduces his prisoners problem
[2]: Assume two prisoners are jailed in different cells. A
warden has been authorized to bring messages from the
one to the other. If messages are ciphered – which means
the warden can not understand the content of the message
– he will become suspicious, and the communication chan-
nel will be stopped. But if the prisoners have agreed on a
code (for instance, a red sun on a painting means a thing,
while a yellow sun means another thing), the message will
not be noticed by the warden, and the prisoners have a
chance to escape.

When deploying a honeypot, the goal is to capture lots of
information about the activity of the attacker. Even if he
notices that he is on a honeypot, learning how he noticed
it is supposed to be a valuable information. This means
that honeypots need to be covert, but not too covert.

Summarizing, steganography and honeypots share some
characteristics: Mainly, once the existence of the honey-
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pot/communication channel is discovered by an attacker,
the game is almost over. In both applications, the pres-
ence of something has to be hidden as good as possible.
But there are always inevitably signs left. For example,
the warden can examine the image and he will notice the
differences between several pictures. For honeypots, the
situation is similar: If an attacker watches out carefully for
signs of deception, he will sooner or later find some.

In this paper we want to show how an attacker typically
proceeds in order to attack or detect honeypots. We will
introduce several techniques and present diverse tools and
techniques which help attackers. In addition, we present
several methods to detect suspicious environments (e.g.
virtual machines and presence of debuggers). The article
aims at showing the limitation of current honeypot-based
research. After a brief theoretical introduction, we present
several technical examples of different methodologies.

The paper is outlined as follows: Section II gives an
overview of related work in the field of detection of hon-
eypots. Several ways to detect honeypots and other suspi-
cious environments are presented in section III. Directions
of further work are outlined in section IV and we conclude
this paper with section V.

II. Related work

Since honeypots are spreading all over networks, more
and more people are interesting in defeating them. First
issues where published in the year 2004 in fake releases of
the well-known Phrack Magazine [3], [4]. In these articles,
the author introduced several ways to fingerprint honey-
pots, either locally or remotely.

However, as Sebek [5], [6] is the primary data capture
tool used by honeynet researchers to capture the attacker’s
activities on a honeypot, it focuses attention. In [7], the
authors propose several ways to detect, disable and cir-
cumvent Sebek. In addition, they introduce a kind of shell
called Kebes which is designed to avoid logging mechanisms
installed by Sebek. While [7] focuses on Linux version of
Sebek, [8] deals with the Windows version of Sebek. He
uses some of his previous results to detect hidden process
or to restore the Service Descriptor Table. Furthermore,
[9] introduces several ways to detect the presence of Sebek
on OpenBSD.

Some of the high-interaction honeypots (i.e. those where
an attacker can connect to, and perform some actions – in
contrast to low-interaction honeypots that just simulate a
service) are based on virtual machines. Security of these
virtual machines have been studied in [10], which demon-
strates the limitations of the Pentium processor. Based on
these results, [11] provides a short program to detect such
an environment without needing any privileges.

III. Detecting Honeypots and other suspicious

environments

A. User-mode Linux (UML)

Some have tried to used User-mode Linux (UML) as a
honeypot [12], but first, let us recall what UML is. Basi-
cally, UML is a way to have a Linux kernel running in an-
other Linux. We will call the initial Linux kernel the host
kernel (or host OS ), while the one started by the command
linux will be called the guest OS. It runs “above” the host
kernel, all in userland. Note that UML is only a hacked
kernel, able to run in userland. Thus, you have to provide
the filesystem containing your preferred Linux distribution.

By default, UML executes in Tracing Thread (TT) mode.
One main thread ptrace()s each new process started in
the guest OS. On the host OS, you can see this tracing
with the help of ps:

host>> ps a

[...]

1039 pts/6 S 0:00 linux [(tracing thread)]

1044 pts/6 S 0:00 linux [(kernel thread)]

1049 pts/6 S 0:00 linux [(kernel thread)]

[...]

1066 pts/6 S 0:00 linux [(kernel thread)]

1068 pts/6 S 0:00 linux [/sbin/init]

1268 pts/6 S 0:00 linux [ile]

1272 pts/6 S 0:00 linux [/bin/sh]

1348 pts/6 S 0:00 linux [dd]

[...]

You can identify the main thread (PID 1039) and several
threads which are ptrace()d: Several kernel threads (PID
1044 – 1066), init (PID 1068), ile (PID 1268), a shell
(PID 1272), and dd (PID 1348). You can retrieve a similar
listing if hostfs, a module to mount a host OS directory
into the UML filesystem, is available:

uml# mount -t hostfs /dev/hda1 /mnt

uml# find /mnt/proc -name exe | xargs ls -l

When used with default values, UML is not designed to
be hidden as the output of dmesg shows:

uml>> dmesg

Linux version 2.6.10-rc2

...

Kernel command line: ubd0=[...]

...

Checking that ptrace can change system call

numbers...OK

Checking syscall emulation patch for ptrace...

missing

Checking that host ptys support output SIGIO...Yes

Checking that host ptys support SIGIO on close...

No, enabling workaround

Checking for /dev/anon on the host...Not
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available (open failed with errno 2)

NET: Registered protocol family 16

mconsole (version 2) initialized on [...]mconsole

UML Audio Relay (host dsp = /dev/sound/dsp,

host mixer = /dev/sound/mixer)

Netdevice 0 : TUN/TAP backend -

divert: allocating divert_blk for eth0

...

Initializing software serial port version 1

/dev/ubd/disc0: unknown partition table

...

All lines in the above listing are specific to UML in de-
fault mode and thus allow fingerprinting. Another sign of
UML is the usage of the TUN/TAP backend for the net-
work device 0 (also included in the above listing). This is
not that common on a real system and thus also allows the
identification of UML.

One of the big issue with UML is that it does not use
a real hard disk but a fake IDE device, called /dev/ubd*.
Via looking at the file /etc/fstab, executing the command
mount, or checking the directory /dev/ubd/, it is possible
to notice the presence of an UML system. To hide that
information, it is possible to start UML with the options
fake ide and fakehd. However, what is displayed may not
be the truth as the major number identifying the devices
/dev/ubd* is 98(0x62), which is not the same as the one
for IDE or SCSI drives.

UML can also be easily identified by taking a look at the
/proc tree. Most of the entries in this directory show signs
of UML as the following two examples show: In the first ex-
ample, the file /proc/cpuinfo, which contains a collection
of CPU and system architecture dependent items, gives us
the information that this is a UML system in TT-mode. In
the second examples, the content of /proc/ksyms tells us
that this is a UML.

$ cat /proc/cpuinfo

processor : 0

vendor_id : User Mode Linux

model name : UML

mode : tt

[...]

$ egrep "uml|honey" /proc/ksysms

a02eb408 uml_physmem

a02ed688 honeypot

In addition, the files iomen, filesystems, interrupts,
and many others look suspicious and allow fingerprinting of
UML. To counter this way of identifying UML, it is possible
to use hppfs (Honeypot procfs, [13]) and customize the
entries in the /proc hierarchy. However, this is a time-
consuming and error-prone task.

Another place to look at is the address space of a process.
The file /proc/self/maps contains the currently mapped

memory regions and access permissions of the current pro-
cess. On the host OS, the address space looks like:

host>> cat /proc/self/maps

08048000-0804c000 r-xp [...] /bin/cat

0804c000-0804d000 rw-p [...] /bin/cat

0804d000-0806e000 rw-p [...]

b7ca9000-b7ea9000 r--p [...]

/usr/lib/locale/locale-archive

b7ea9000-b7eaa000 rw-p [...]

b7eaa000-b7fd3000 r-xp [...]

/lib/tls/i686/cmov/libc-2.3.2.so

b7fd3000-b7fdb000 rw-p [...]

/lib/tls/i686/cmov/libc-2.3.2.so

b7fdb000-b7fde000 rw-p [...]

b7fe9000-b7fea000 rw-p [...]

b7fea000-b8000000 r-xp [...] /lib/ld-2.3.2.so

b8000000-b8001000 rw-p [...] /lib/ld-2.3.2.so

bfffe000-c0000000 rw-p [...]

ffffe000-fffff000 ---p [...]

The first column shows the address space in the process
that it occupies. The second column is a set of permissions
(r = read, w = write, x = execute and p = private) and
the third column in this listing is the pathname.

In contrast to that, the address space inside the guest
OS looks like:

uml:~# cat /proc/self/maps

08048000-0804c000 r-xp [...] /bin/cat

0804c000-0804d000 rw-p [...] /bin/cat

0804d000-0806e000 rw-p [...]

40000000-40016000 r-xp [...] /lib/ld-2.3.2.so

40016000-40017000 rw-p [...] /lib/ld-2.3.2.so

40017000-40018000 rw-p [...]

4001b000-4014b000 r-xp [...]

/lib/tls/libc-2.3.2.so

4014b000-40154000 rw-p [...]

/lib/tls/libc-2.3.2.so

40154000-40156000 rw-p [...]

9ffff000-a0000000 rw-p [...]

beffe000-befff000 ---p [...]

What is not that common is the top-most address, which
indicates the end of the stack. The mapping of the dy-
namic libraries is not relevant for this example. Depending
on the amount of memory available on the host, the end
of the stack is usually 0xc0000000. However, in the guest
OS it is 0xbefff000. In fact, the address space between
0xbefff000 and 0xc0000000 inside the UML system con-
tains the mapping of the UML kernel. This means that
each process can access, change, or do whatever it wants
with the UML kernel.

Summarizing, it is pretty easy to fingerprint the pres-
ence of UML. We have implemented the techniques out-
lined above in a little tool called UMLfp.
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To fix most of these problems, it is possible to start UML
either with the argument honeypot or with the skas mode
(Separate Kernel Address Space, [14]). However, having
skas mode running is not that easy, and the host kernel is
really not stable. During tests, we had especially problems
with pending processes which lead to reboots in our setup.

B. VMware

VMware [15] is a very efficient virtual machine software
which provides a virtual x86 hardware. Thus, it is possible
to install (almost) any operating system on VMware, for
example Linux, Windows or Solaris 10. These operating
systems are isolated in secure virtual machines and the
VMware virtualization layer maps the physical hardware
resources to the virtual machine’s resources, so each virtual
machine has its own CPU, memory, disks, I/O devices, and
others.

So, the first step to detect VMware is to look at the
hardware since it is supposed to emulate it. Prior to version
4.5, there are some specific pieces of hardware that are not
configurable:
1. the video card: VMware Inc [VMware SVGA II] PCI

Display Adapter

2. the network card: Advanced Micro Devices [AMD]

79c970 [PCnet 32 LANCE] (rev 10)

3. the name of IDE and SCSI devices: VMware Virtual

IDE Hard Drive, NECVMWar VMware IDE CDR10, VMware

SCSI Controller

It is possible to patch the VMware binary to change these
default values. Kostya Kortchinsky from the French Hon-
eynet Project has written a patch which is able to set these
values to some other values [16].

It is also possible to identify a running VMware in de-
fault mode by looking at the MAC address of the network
interface [17]. The following ranges of MAC addresses are
assigned to VMWare, Inc by IEEE [18]:

00-05-69-xx-xx-xx

00-0C-29-xx-xx-xx

00-50-56-xx-xx-xx

The MAC address of the network interface can be re-
trieved by looking at the cached MAC addresses with the
command arp -a or by looking at the data related to
the interface (Unix systems: ifconfig, Windows systems:
ipconfig /all). Thus it is possible to fingerprint VMware
this way.

Furthermore. the VMware binary has an I/O backdoor.
This backdoor is used to configure VMware during run-
time. An analysis of Agobot, an IRC-controlled backdoor
with network spreading capabilities, revealed that this I/O
backdoor of VMware is used for detection. The following
sequence is used to call backdoor functions:

mov eax, VMWARE_MAGIC ; 0x564D5868

mov ebx, b ; <parameter of command>

Command number Description
05h Set current mouse cursor position
07h Read data from host’s clipboard
09h Send data to host’s clipboard
0Ah Get VMware version
0Bh Get device information

Fig. 1. Possible commands to execute via VMware backdoor

mov ecx, c ; <number of command>

mov edx, VMWARE_PORT ; 0x5658

in eax, dx

At first, register EAX is loaded with a magic number that
is used to “authenticate” the backdoor commands. Regis-
ter EBX stores parameters for the commands and in register
ECX the command itself is loaded. Table 1 gives an overview
over some possible commands [19]. In total, there are at
least 15 implemented commands.

Register DX stores the I/O backdoor port and with the
help of the IN instruction, the backdoor command gets ex-
ecuted finally. So with the help of the VMware I/O back-
door, it is possible to interfere with a running VMware.

The patch by Kostya Kortchinsky [16] can change the
magic number and thus somewhat “hide” the backdoor
from an attacker.

C. Detecting additional lines of defense: chroot and jails

chroot() has never been designed for security, but is
considered as a necessity as soon as one wants to protect
a sensitive server. Detecting of a chroot environment – or
even circumventing it – is not really difficult. Unless the
chroot directory is on a specific partition, and placed on
top of it, the inode numbers are not those expected at a
real root directory. This information can be retrieved with
the ls -i command:

# ls -ialgG /

2 drwxr-xr-x 24 4096 2004-11-30 08:14 .

2 drwxr-xr-x 24 4096 2004-11-30 08:14 ..

[...]

Here, the directories inodes of . and .. are the same,
and are equal to 2, which is the normal value for a root
directory on a partition. In the current directory, the com-
mand returns the following information:

# ls -ialgG .

1553552 drwxr-xr-x 6 4096 2004-12-14 13:58 .

6657574 drwxr-xr-x 6 4096 2004-12-12 16:25 ..

When using chroot with a shell in the current directory,
ls -i returns the same inodes numbers for . and ..:

# chroot . /bin/busybox

BusyBox v0.60.5 (2004.10.29-22:08+0000)
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multi-call binary

# ls -ialgG

1553552 drwxr-xr-x 6 4096 Dec 14 12:58 .

1553552 drwxr-xr-x 6 4096 Dec 14 12:58 ..

While the .. has been changed to match the . directory,
it is still not the expected value of 2.

But there is much more to do in a chroot environment.
For instance, it is possible to send signals to any process
outside the chroot(), or even attach to outside processes
with ptrace(). Since ptrace() can be executed from in-
side the chroot environment on any process outside the
chroot(), it can be used by an attacker to inject what-
ever he wants on the host. Such evasions are also possi-
ble through mount(), fchdir(), sysctl() and many other
commands [20].

So, when thinking about virtual environments and secu-
rity, chroot() is definitely not to use. Therefore, FreeBSD
enforces confinement based on chroot to provide another
mechanism, designed to be more reliable: the jail(). A
jail creates a virtual host, bound to an IP address, with
its own tools, users, and so on. This is very convenient for
virtual hosting, and could be for honeypots, too. However,
since it is more reliable, it is not very covert. There are
several tests to fingerprint a jail:
1. All processes in a jail have a specific “J” flag:

jail# ps

PID TT STAT TIME COMMAND

6908 p0 SJ 0:00.02 /bin/sh

6910 p0 R+J 0:00.00 ps

In addition, the PIDs do not increase in the usual way
inside a jail.
2. The inode number of the root directory is not 2 as ex-
pected on a real system.
3. By default, raw sockets are forbidden:

jail# ping -c 3 miscmag.com

ping: socket: Operation not permitted

Note that this is configurable in the latest FreeBSD release.
4. Sniffing in a jail environments gives access to all traffic
that comes through the device. This is a design issue since
a jail is usually built as an alias on a real device.

In this section, we focused on detection if we are jailed
in a confined environment. However, is this a real issue?
Learning we are on a “restricted host” is not that important
as such systems are spreading all around Internet. How-
ever, the real issue deals with the leaking from the guest
system to the host system. And currently, there are very
few (if any) systems that have proved to be well confined.

D. Timing issues

The main solutions to build a high interaction honeypot
are improving logging or using a virtual machine. These
techniques do have a price: each action performed by the

intruder on the honeypot is longer than on a sane system.
Longer can have several meanings:
1. More instructions are executed. Either to log the true
instruction, or to emulate it.
2. More time is needed to execute the true instruction,
because it is not the only instruction to be executed.

Hence, having reliable ways to measure either the num-
ber of instructions or the execution time also provides an
efficient way to detect a hazardous environment.

A solution, Execution path analysis (EPA), based on a
counter for executed instructions, has been given in phrack
59 by Jan K. Rutkowski [21]. The principle is to hook the
syscall handler (int 80) and debug exception handler (int
1) in the IDT (Interrupt Description Table). Then, by set-
ting the TF bit (mask 0x100) in EFLAGS register, the new
handlers are able to count each SIGTRAP generated when
an instruction is executed. Initially proposed for Linux, it
has been ported to Windows, too. This was not easy since
Windows includes a way to protect the IDT. A recent arti-
cle by Edgar Barbosa [22] demonstrates how to circumvent
EPA. In phrack 59 [21], there is also a discussion about the
x86 instruction rdtsc which is an answer to Marcin Szy-
manek. Jan K. Rutkowski claims that measuring syscall’s
time with rdtsc is not accurate enough due to optimiza-
tions in new compilers.

Nevertheless, G. Delalleau, another member of the
French Honeynet Project, chooses to explore this further
[23] because EPA has several drawbacks:
1. It requires some high privileges (root and kernel space
access)
2. Modification in the system calls are not that covert: the
DF bit can be detected, as the change of the address for
the int 1’s handler.

Hence, he proposed a solution to detect the changes in
execution time based on specific registers and instructions
provided by the CPUs (e.g. rdtsc on x86-based hardware).
The well-known problem is that measurements can change
greatly due to context switches, IRQ, and other things.
Looking at mean time or minimal execution time is the
first place to look at. Please note that we will keep using
the term time below, while we are in fact measuring ticks.

Delalleau proposed a solution to make the time com-
parison more accurate [23]: Doing many measurements so
that they are statistically valid. During a learning phase,
one evaluates the distribution for execution times. Then,
when one arrives on a suspect host, the reference distribu-
tions between the sane system and the suspected one must
be compared. Delalleau proposed to use the usual scalar
product between the Fourier transform of the both sets of
measures for comparison. It is necessary to remove high
frequencies to suppress the noise. The normalized scalar
product of the sets will be close to 1, and will thus in-
dicates a clean host (if the reference set corresponds to a
clean system of course), while it will be close to 0 on the
contrary.
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This works quite well because rootkits hook functions
and virtual machines add several steps in the normal exe-
cution flow:
1. Detecting Sebek by measuring execution time of the
read() system call. On a system without Sebek, minimal
time is around 8225 and the scalar product is 0.776282. In
contrast to this, a system with Sebek has minimal time of
29999 and scalar product of 0.009930. An explanation is
probably that read() with Sebek is that long because each
read() operation causes the sending of at least one UDP
packet.
2. Detecting VMware is also very easy causing an illegal
instruction as the VMware’s exceptions handler needs to
check whether the exception must be handled by VMware
itself or by a specific handler present if the process which
caused the illegal instruction. The timing to handle an
illegal instruction is 776mms on a sane system, while it
increases to 2530mms inside a running VMware.

E. Detecting Debuggers

Debugging is a feature provided by the processor (CPU)
and managed by the operating system (OS). Most recent
CPU and OS give several ways to supervise the way a pro-
cess is running. Some features are available from ring 3
(user mode or user space), others are restricted to ring 0
(supervisor mode or kernel space). In this section, we will
mainly focus on x86 architecture, and on Linux and Win-
dows as OS.

Note that we will only deal with debugging here, but
it should also be combined with reverse engineering tech-
niques so that the analysis of the binary itself do not give
any information. Obfuscation techniques include ciphering,
dis-aligning the instructions, headers modification, junk
code, and many others which will not be detailed.

Debugging is a very efficient way to learn about a process
activity (even if this is not the only solution). As soon as a
developer wants to protect his software, he can include in
the instructions flow some mechanisms to prevent debug-
ging. This is possible because debugging is a very low level
feature, which makes it quite easy to detect. Firstly, we
will introduce generic ways to debug a process, and then
focus on specific techniques and tools.

The general way to trace process under Unix is to use
the system call ptrace(). It allows a process to attach
another and access all of its memory: data, instructions,
and other information. There exists a very easy way for a
process to check whether it is ptrace()d or not:

#include <sys/ptrace.h>

#include <stdio.h>

main()

{

long int err;

err = ptrace(PTRACE_TRACEME, 0, NULL, NULL);

if (!err) printf("not traced\n");

else perror("ptrace()");

}

Calling ptrace(PTRACE TRACEME, 0, NULL, NULL) will
force a process to attempt to ptrace() itself. Since a pro-
cess can only be ptrace()d once, this will fail if a process
is currently debugged by another process.

Under Windows, there is an API called IsDebuggerPresent():
with Windows NT, it searches in the Process Environment
Block (PEB) for the field IsDebugged. It works differently
with Windows 9x since there is no PEB. So, a program can
use this API to check the presence of a ring 3 debugger. In
fact, this API is not called directly, but the corresponding
assembler code is embedded in the program.

These ptrace() and IsDebuggerPresent() functions
are quite high level APIs provided by the OS. However,
they are built on features of the processor / main board.

Furthermore, there are software breakpoints. They are
caused by the int 3 assembler instruction, whose specific
opcode is 0xCC. It’s main default regarding our topic is that
it is a destructive way to debug a program: the user has
to replace an opcode in the memory section containing the
instructions (usually referred as the code or text section).
Hence, a program which contains and checks constantly
its own checksum or cryptographic hash will detect the
modification, and can stop or do whatever the program-
mer wants. For example, he can set a specific handler for
this interruption in the Interrupt Descriptor Table (IDT)
if the program is running under Windows 9x. This is no
more possible with the latest releases of Windows nor with
Linux as writing to the IDT requires to be in ring 0. A less
computationally expensive way to prevent software break-
points is to scan the memory for opcodes 0xCC.

A further analysis of Agobot, an IRC-controlled back-
door with network spreading capabilities, showed that it
does not only include functions to detect the presence of
VMware, but also detect the presence of debuggers and
breakpoints. The following code is used to detect software
breakpoints:

mov esi, address ; load function address

mov al, [esi] ; load the opcode

cmp al, 0xCC ; check if the opcode is 0xCC

je BPXed ; yes, there is a breakpoint

; jump to return true

xor eax, eax ; false,

jmp NOBPX ; no breakpoint

BPXed:

mov eax, 1 ; breakpoint found

NOBPX:

Another way to debug a program is to trace it step by
step. This is done by controlling the 8th bit of the EFLAGS

registers, which is called TRAP. When it is set to 1, the
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processor initiates the int 1. Thus, a process can check
easily it’s TRAP bit by accessing the EFLAGS register though
the pushf instruction.

All x86-based processors have also seven specific regis-
ters designed for debugging: DR7 is a control register, DR6
a status register, DR5 and DR4 are reserved and DR3, DR2,
DR1, and DR0 can contain an address to be supervised. The
user just has to set the address which he wants to super-
vise in one of the address register, and chose what kind of
operation (read or write) he wants to supervise using the
control register DR7. As this is a privileged operation, it
must be performed by the kernel itself (ring level 0) using a
movl instruction. Hence, under Linux, you need to use the
system call ptrace() to access these registers through the
commands PTRACE PEEKUSR and PTRACE POKEUSR. Calling
this will cause a system call which will bring the arguments
in the ring 0 before accessing the registers. Thus, to pre-
vent the use of debug registers, a program just needs to
call ptrace() to set them to 0. Under Windows, it is fea-
sible to change these registers in an exception handler. The
programmer set a specific handler in the Structured Excep-
tion Handling (SEH) and cause an error in the code (e.g.
a division by 0). When context-switching to the handler,
debug registers are saved on the user stack. Hence, it is
possible to read and write these saved values, which will
be restored to the registers by the kernel when the handler
will be over.

Under Windows, some softwares also embed a detection
step for some common debuggers, like OllyDbg in ring 3 or
SoftIce in ring 0. There are many solutions to detect their
presence on the system. As a short example, an excerpt
from the source code of Agobot shows a possible way to
detect the presence of OllyDbg:

push 0x00

push caption ; char *caption="DAEMON"

mov eax, fs:[30h] ; pointer to PEB

movzx eax, byte ptr[eax+0x2]

or al,al

jz normal_

jmp out_

normal_: ; return false,

xor eax, eax ; no debugger

leave

ret

out_: ; return true,

mov eax, 0x1 ; debugger detected

leave

ret

Usually, when a debugger is running, the only protection
for the attacker is to detect it’s presence before performing
anything and then escaping. However it can be much more
fun if such a debugger contains a flaw, and thus be exploited

by the reversed program. That way, it can have its code
executed on the system without being supervised [24].

IV. Further work

As our research has shown, there are several ways to fin-
gerprint current honeypot-related technologies. Further-
more it is possible to detect other suspicious environments
and we showed that current malware already implements
techniques to do so. So in the future, we need to develop
existing tools further and improve their stealthiness, e.g.
by removing additional signs of the emulator itself in the
case of UML or VMware.

Another area of further research aims at developing new
kinds of honeypots. Any fisherman knows it: to catch a
specific fish, one needs a specific bait. Currently, the de-
ployed honeypots are designed to catch generic attacks, for
example worms and viruses, script kiddies using automatic
tools, and so on. To catch advanced threats, we will prob-
ably need new types of honeypots.

A possible idea for such new types of honeypots include
client-side honeypots: Since we see more and more attack-
ers exploiting holes in client programs (e.g. via exploits
in Microsoft’s Internet Explorer), the honeypots have to
further evolve. As clients depend on the server they are
working with, we need to design client-side honeypots ac-
cording to the protocol and what we want to catch.

We differentiate between two of client-side honeypots.
On the one hand, these type of honeypots can be active.
This is the usual behavior, since they connect to a given
server, send some commands, and get back the results. In
fact, active clients are synchronous (e.g. web browsers).
On the other hand, some are passive, waiting for an event
to happen. Those are asynchronous (e.g. mail clients),
which means we have to find a way to trigger that event.

For synchronous client-side honeypots, a possible way
of further research would be the development of a web-
based honeyclient. This honeypot would aim at finding
servers compromising the browser. The first step of this
methodoloy will be to find sites attacking web browsers,
and then understand what kind of attack it is. Finding
the sites may not be that difficult using the same tricks as
some worms do right now: google.com. May be classifying
the results obtained by keyword may be interesting (warez,
sex, casino, and so on).

The web-based honeyclient can be the target of different
kinds of attacks:

• To install an IRC bot: the goal is to install an Internet
Relay Chat (IRC) bot, so that it becomes part of a botnet
and can be remotely controlled.
• To install a “proxy”: the goal is to take control of the
host and install a SOCKS proxy or an IRC bouncer.
• To install a spyware: the goal is to install spyware which
will capture sensitive information, and install additional
and malicious software on the victim’s computer.
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• To retrieve sensitive information from the victim’s ma-
chine, for example credit cards numbers, passwords, or
cookies (identity theft).

The web-based honeyclient has to perform an integrity
check of the whole system after interacting with a spe-
cific website to determine if it has been compromised. Via
montoring of file-system activity, monitoring of registry-
modifications, and a couple of other operations, this can
be achieved. To be valuable, the tests can send different
user-agent strings. This could make the administrator
of the site suspicious if he analyzes his log-files regularly.
Thus, to prevent such a detection, it could probably be
very useful to use some anonymizing devices.

Note that all these tests should be performed for MS
Windows, with multiple browsers as it is currently the priv-
ileged target. However, if the tool is well written, tests
must also been performed on other OS.

For asynchronous client-side honeypots, also several ap-
proaches for further research can be considered:

• IRC-based honeyclients that join a specific IRC server
and channel (e.g. #warez, #1337). Then they just idle in
this channel or throw in random quotes.
• Instant messenger-based honeyclients (e.g. AIM, ICQ,
MSN, . . . ) that connect to the network and interpret re-
ceived messages
• Mail-based honeyclients that download e-mails, analyze
the content and click on links (thus being very similar to
web-based honeyclients).
• Peer-to-Peer (p2p) based honeyclients that randomly
download files from p2p-networks and execute it.

Again, these types of honeypots have to regularly check
their own consistency and detect changes. This way, they
can notice if they were exploited by malicious servers or
other attackers.

V. Conclusions

There are two ways to build a high interaction honey-
pot, which can be combined: using a virtual machine,
or improving the logging capabilities of a system. Cur-
rently, high interaction honeypots mainly catch script kid-
dies. The tools they use are not that clever, but are ex-
tremely efficient. We can bet that they will soon embed fin-
gerprinting technologies to ensure their own safeness. With
the fingerprinting techniques included in Agobot, this has
already begun. And it will be sufficient if only one person
decides to write functions for fingerprinting honeypots and
other suspicious environments – thousands of kiddies ben-
efit from these techniques and add them to their toolkit.

Does that mean building high interaction honeypot is
useless? A few years ago, port scans were the back-
ground noise of the attackers in the Internet, and de-
tected by firewalls. Some years later, it were vulnerability
scanners, which were detected by IDS. Now, the noise is
recorded with these honeypots: automatic tools exploiting

well known flaws. This tells us it is already time to prepare
the next generation of high interaction honeypots. Things
are evolving quickly. Presumably the existing honeypots
can be developed further to observe advanced threats, so
the arms-race continues.
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