
Proceedings of the 2005 IEEE
Workshop on Information Assurance and Security

T1B2 1555 United States Military Academy, West Point, NY, 15 – 17 June
2004

Towards a Third Generation Data Capture Architecture for Honeynets

Edward Balas and Camilo Viecco

Advanced Network Management Lab

Indiana University

Abstract— Honeynets have become an important tool for

researchers and network operators. However, their effec-

tiveness has been impeded by a lack of a standard unified

honeynet data model which results from having multiple un-

related data sources, each with its own access method and

format.

In this paper we propose a new data collection architec-

ture that addresses the need for both rapid comprehension

and detailed analysis by providing two data access methods:

a relational model based fast path, and a canonical slow

path. We also present a set of tools based on this architec-

ture.

I. Introduction

A Honeynet is a network of high interaction honey-
pots[1]. High interaction honeypots are quite different from
low interaction honeypots such as Honeyd [2] for they pro-
vide a full operating system and set of software for an in-
truder to interact with. This high level of interactivity is a
desired because it allows researchers the ability to observe
the behavior of an intruder in a live system, and not a sim-
ulation. As a result, high interaction honeypots are well
suited to capture new or unanticipated activity. However,
high interaction honeypots collect a larger volume detailed
data from multiple data sources making it difficult to man-
age honeynets and make sense of the collected data.

To help facilitate honeynet deployments and the sharing
of information between researchers, The Honeynet Project
standardized the GenII honeynet architecture[3]. This ar-
chitecture includes a specification of Data Capture proce-
dures whose purpose is to “log all of the attacker’s activity”.
The GenII Data Capture procedures specify the collection
of three types of data: firewall logs, network traffic and
system activity. Figure 2 provides a schematic represen-
tation of a typical Gen II deployment. This architecture
does not provide any guidance on how to store or access
the captured data.

In the standardized architecture, firewall logs are used
to provide a summary of the network activity. The
“rc.firewall” script provided by the honeynet project al-
lows this by using the Linux IPTables[4] connection track-
ing capabilities. We feel this logging is counter-intuitive
because firewall logs are typically used for policy auditing
and in this case they are being used to provide summary

Fig. 1. GenII Honeynet Data Capture.

accounts of network activity. In addtion, these summaries
lack needed detail such as the duration and quantity of
network activity

Network traffic and Intrusion Detection System(IDS)
events are captured using the Snort IDS system[5]. For
Data Capture, two instances of are executed, one to merely
record the raw traffic, and the other to examine the net-
work traffic looking for events that are indicative of misuse
or intrusion.

System activity refers to monitoring activity from the
perspective of each high interaction honeypot. This type
of monitoring includes two types of data: Syslog and Se-
bek. Syslog data is provided by each honeypot’s operating
system. Sebek is a tool developed by the Honeynet Project
to monitor the behavior of intruder even when the intruder
uses session encryption[6]. Sebek operates as hidden ker-
nel module which covertly exports log data to the logging
system.

The GenII honeynet architecture gathers very detailed

1



data but it suffers from a number of limitations. We as-
sert that there are three problems with the existing GenII
design.

First,the GenII data ontology is very coarse and exces-
sively rigid. The three “layers” as defined in the archi-
tecture are directly tied to the tools that gather the data
rather than to the types of data collected. This poses a
problem for tools that collect both system and network
data, and makes it difficult to integrate new subtypes of
data.

Second, while GenII honeynets do collect deatailed data,
this data is largely unstructured within a data source. For
instance, while we know that the apparently unstructured
packet capture data does have a structure which can be
represented using a network flow abstraction, these flows
are not explicitly stored in the data and thus need to be
rediscovered each time the data is examined.

Lastly, the data storage is unorganized; each data source
is stored in a format defined by the tool gathering the data
with no relationship to the data gathered by any other tool.
As an example, lets assume we want to identify all IDS
alerts related to a network connections containing a bidi-
rectional flow of data. To do this, a tool would need know
how to read and parse pcap data, then it would have to
process the pcap data to recreate the set of network flows.
Next, assuming the tool is capable of processing snort IDS
logs, the tool would need to take the matching network
connections and search through the IDS data looking for
matches based on the key attributes of each connection.
This lack of unification is a problem for several reasons.
First, every time we want to examine the network traffic
from a network flow or connection level of abstraction we
need to process the raw traffic data, causing an unneces-
sary inefficiency. Second, because the data is stored in a
data format which is implicitly defined by the tool gather-
ing it, the addition of a new tool such as the Bro IDS[7],
introduces a new data format which is incompatible with
existing analysis tools. This forces every analysis tool to
be partially rewritten for each new data source.

To solve these problems we propose a third generation of
data capture architecture for honeynets. This new archi-
tecture includes a hierarchical ontology, a relational data
model based on the new ontology and a consistent data ac-
cess method.What follows is a description of the proposed
architecture and an implementation based on the architec-
ture.

II. Our Approach

The data capture architecture needs to define a data
model which is independent of the format of the data source
and which reflects the conceptual structures involved. Our
approach is based on the following abstractions: hosts, pro-
cesses, network flows, and files. The relationships between
these structures is illustrated in figure 2.

Host

File

Process

Flow

Fig. 2. Data Model Relationships.

Hosts represent individual instances of a running oper-
ating system. Hosts contain Processes and are typically
associated with an IP address. While the association of
IP address to Host is unreliable due to NAT etc, from the
perspective of the Honeynet it is sufficient, and since the
end point which is a Honyepot is a known entity and this
relationship can be reliably discovered. Hosts provide an
abstraction around which we can group all other data, net-
work flow data, process data and file data. Data from every
data source contributes to the representation of a host.

Processes are an executing instance of a program which
interacts with the host using system calls. These system
calls include the ability to access files and communicate
with other hosts. The process abstraction is suited for or-
ganizing system call activity. Such activity includes socket
calls which can create or terminate network flows and read,
write, and open calls which effect files.

Files are what one would typically think of as data resid-
ing on the hard drive of a system. It is a contiguous set of
binary data stored as a single unit. They typically have a
name, and are referenced within the operating system with
some form of identifier such as inode.

For the purposes of our model , we are defining a network
flow as a possibly bidirectional communication between two
hosts which involve a pair of end points. These endpoints
are defined by the IP address, IP protocol number, and
depending on protocol, the port number. Flows can be
related to a host’s process data via the socket system call.

A. Objectives

There are four objectives we wish to address with he new
architecture:

The data model should be directly based on this ontol-
ogy and strive to be independent of data source. In the
GenII model, adding a new data capture instrument re-
sults in a new data format, and every analysis tool needs
to be modified to use the new data source. While it is
unlikely that we can eliminate the need to modify tools to
fully benefit from a new data source, we feel that we can
limit the amount of work by keeping the data access and

2



encoding methods consistent. The need for interoperabil-
ity between functionally equivalent tools provides another
situation where having a source independent standard data
model is necessary.

The data model should be capable of expressing the rela-
tionships between the different types of information in the
model. As an example, a network flow is going to be re-
lated to a host and process, the model should make it easy
to identify that relationship. If we were monitoring system
call activity on a honeypot we should be able to relate a
network flow to a system call made by a process on one of
the hosts. This type of monitoring is key to programmatic
identification of incident causality[8].

The data should be added to the composite data store
on a continual basis as close to real-time as practical. This
allows the system to preprocess the data into the data store
as the data comes in rather than trying to do it at the
moment an analyst asks for data, thus reducing the work
required from multiple examinations of an event.

Lastly, it is necessary that a programmatlly consistent
data access methods is provided. In order to allow re-
searchers to automatically share data between Honeynets,
it is not sufficient to simply standardize how we collect
data, but also the methods of representing and sharing
data.

B. Fast Path and Slow Path

During the construction of our model we observed that
there are two competing needs of the analyst. One is a
high level understanding of the behavior of the intruder
inside the honeypot. This is the need to have a grasp of
the full scope of an intrusion which covers the basic who,
what, where and why questions. The other,is the need to
recover information at the most detailed level available in
order to accurately understand a specific technique or be-
havior. An example of the latter is the need to understand
the exact actions taken within an exploit or the need to
reverse engineering a recovered malware tool. To satisfy
these competing needs we propose the separation of the
data model and access methodology into two data paths.

For the high level comprehension, we provide what is
know as fast path data access. Fast path access provides
a unified view of events in a relational form, with some
degradation in detail. This data guides the analyst toward
interesting events which may require more detailed analysis
and provides a solid foundation for macroscopic efforts such
as trend analysis. The fast path data is stored in a unified
relational model.

For detailed inspection of the “interesting” events a slow
path data access method is provided. The slow path access
provides the level detail needed for forensic type investiga-
tions, malware analysis, or packet analysis, where accuracy
and detail are paramount. Slow path data is stored in its
canonical form. Pcap files are the only canonical form since

they not only contain all the information extracted by the
data collection tools but they also contain all the data nec-
essary to regenerate all our derived data sources 1.

We propose that this hierarchical model can be repre-
sented relationally. We see this as desirable for two rea-
sons: first the composite data model we are proposing is
highly relational; second, a relational database system can
provide the desired programmatic consistent data access.

III. Our Implementation

The implementation described is the basis for a Hon-
eynet data capture and analysis system under development
for the next generation Honeywall[9]. For this paper we
provide a brief introduction to the next generation data
capture and data analysis capabilities, the heart of which
are at the core of this paper. In this section we will briefly
cover our enhancements to the GenII data collection archi-
tecture, our data fusion methodology, and we will examine
analysis capabilities enhanced with this approach.

A. Data Collection

Key to our making use of the proposed model but absent
from the GenII design are multiple data types which are
not explicitly collected within the GenII architecture. This
section addresses how we collect each of these new types
of data and why they are important to create a contiguous
composite view of intrusion sequence.

Within the GenII architecture IPTables is used to ap-
proximate network flow monitoring with its connection
tracking capability. However, while providing some aspects
of the flow concept,this capability does not provide valu-
able details such as quantity of data transfered, bidirec-
tionality information or end time of a network connection.
Such information is desired to estimate the interest of a
connection, for example one might be more interested in
a bidirectional flow lasting 10 seconds than a flow lasting
under a second and consisting of a single packet.

To improve the collection of flow data, we turned to
Argus[10], a tool designed to provide flow monitoring
as defined by the IP Performance Measurement Working
Group[11][12]. Argus provides network flow records which
contain summary detail not provided by IPTables connec-
tion tracking, such as the start and end of the flow, num-
ber of bytes transmitted in each direction and number of
packets transmitted in each direction. Similar in design
to snort, Argus collects the canonical network traffic data
using libpcap, and it then processes this data to create a
derived data source. This data source is used to populate
flow related fields in the relational model. Unlike the Con-
nection Tracking logs, this data does describe the quantity
of data and duration of each flow.

1With the expecption of IDS alerts, since in order to recreate them
we also need the rule set used at that particular time

3



To augment our understanding of the network activ-
ity and the hosts at either side of a communication, we
added passive operating system fingerprinting capability,
provided by the p0f[13] tool. P0f is also a pcap based
monitor that provides an estimate of the operating sys-
tem(OS) used by host that initiates a TCP connection.
This data is useful for two reasons. First, across flows it
allows one to see if the apparent host OS is changing for a
given IP source providing an indication that the host might
be behind a NAT. Second, OS identification can improve
the accuracy of IDS events through the process of passive
alert verification[14][15]. For instance in a situation where
a apache mod ssl exploit[16] is launched against a non-linux
host, the system could detect this discrepancy and treat the
alert with a lower priority similar to the approach taken by
RNA[14]2.

The addition of the Argus and p0f data to the Snort
and packet capture data provides a more comprehensive
representation of events than provided in the GenII design.
Further this new data can be organized around the concept
of a network flow. However additional data sources are
needed to bridge the relational gap between the network
flows and processes on a host.

To bridge this gap we enhanced Sebek [6] to monitor net-
work activity from the host’s perspective. Sebek is a kernel
based data capture tool designed to be installed on high in-
teraction honeypots [1]. Balas modified Sebek to monitor
socket, process and file activity [17]. These modifications
provided three necessary capabilities.

First, Sebek was enhanced to monitor socket activity.
Whenever a honeypot accepts or creates a network con-
nection, Sebeck records the IP level attributes as well as
the corresponding host, process and inode. This allows
us to relate a network flow to the specific open inode and
file descriptor used by a process to service the connection.
This data is integral to providing a composite view of the
incident that transcends flow and host data. Once a net-
work connection associated with an intrusion attempt is ob-
served, we immediately know which inode and process the
intrusion was tied to. Using this data we can quickly iden-
tify related information such as the keystrokes captured by
Sebek.

Second, Sebek was enhanced to monitor process creation.
This monitoring allows us to relate one process to another,
rebuilding the process tree. This is important in intru-
sion analysis for it allows us to track the intrusion forward
from the point of intrusion identifying all processes cre-
ated, and any other causally related system activity, such
as outbound network connections[8]. The same capability
can be used in reverse, if we see an outbound connection
on a honeypot, we can back track to identify the point of

2p0f can only estimate the OS of the TCP initiator, in this example
the OS of the host under attack is known by either manually intro-
duction of the OS by part of the administrator as with a honeypot or
through previous TCP connections initiated by the particular host

Honeynet Ethernet

Raw Socket

libpcap

P0f
Passive

OS
detector

Snort
Intrusion
Detection
System

Argus
Flow

Monitor

Sebek
Data

Collector

Traffic
Recorder

Hflowd: Data Fusion

Relational Data Access Raw Data Access

Deamons

Kernel

Hflow DB Pcap

Fig. 3. Data collection and fusion diagram

intrusion.

Lastly, the ability to monitor the opening of files was
added. Coupled with the process tree this allows us to iden-
tify all files accessed as part of an intrusion. This knowledge
can in turn be used to prioritize data analysis efforts. As
an example, presume that a specific intruder likes to place
his/her files in a unique location in the file system. Once
this location is identified, we can quickly search preexisting
data for any prior indications of the same intruder’s pres-
ence. This capability can also be used to create a crude
form of Honeytoken[18] where the act of accessing a cer-
tain file might be deemed an interesting event requiring
further investigation.

B. Data Fusion

Hflow was developed to combine each of these data
sources into a composite relational model. It continually
consumes data from each source, fusing it based on iden-
tifiable relationships and it then loads this data into a
database.

Hflow receives Argus flow, Snort IDS, p0f OS fingerprints
and Sebek data. This data once combined is then inserted
into a database.

Flow related data, such as Argus and Snort, are corre-
lated based on corresponding tuples consisting of the IP
protocol number, the source and destination IP addresses
and if applicable port numbers which fall within the same

4



time period. This is similar in approach to the way an op-
erating system determines which socket a packet is related
to.

Process data is gathered by Sebek and organized based
on the process ID. For every activity monitored by Sebek
both the process ID and parent process ID are recorded.
This combination allows Hflow to recover the process tree.
One concern with the process ID is that it is a counter
that can roll over. While the process ID value eventually
rolls over, during the same period in time no two processes
on a single host will share a process ID. Further, in the
unlikely event that 2 processes share the same process id
in close time proximity, it is even more unlikely that the 2
processes will have the same combination of process id and
parent process id.

File data is linked to process data by monitoring system
calls that provides us with the process ID of the acting
process, and the inode number of the file being acted on.
By monitoring the open and read system calls, we are able
to map process activity to a specific file.

The result of Hflow data fusion is a unified data set
with identifiable relationships between the logical cate-
gories. This data is exported in the necessary format to
be uploaded into a relational database in a continual basis.

However, the database is a reduced representation of the
complete system activity record. As a result, we also store
the networks full packet capture to provide detailed anal-
ysis of process flows and to have a backup of the canonical
data source.

To bridge the gap between the slow path packet capture
data and the fast path data, the pcap api was developed,
this tool allows analysts to download a dynamically gen-
erated pcap file using the database ID corresponding to
a flow in the Hflow database as input. When an analyst
is examining the fast path data and identified a network
flow requiring closer examination, the pcap api is used to
extract only the raw data that matches in time and IP
header info defined by the referenced flow.

The mapping of each data capture tool to the categories
of data produced can be seen in table I.

TABLE I

Mapping capture tool to model categories

Tools Flow Host Process File

Argus Yes
p0f Yes Yes
Snort Yes
Sebek Yes Yes Yes Yes

C. Data Analysis

To demonstrate the utility of of the fast path and slow
path data model, we developed Walleye, a web based Hon-
eynet data analysis interface. The purpose of the interface

is not to be a comprehensive or monolithic analysis plat-
form. It is designed to facilitate intrusion sequence com-
prehension thought the presentation of a sequence-centric,
composite view of the data. By this we mean that the view
of the data we provide is a composite of each of the raw
data sources. If successful, what the analyst perceives is
the greater than any with any single source of data. It is
hoped that the composite view provided by Walleye, which
spans multiple data source will improve the analyst’s ca-
pability to quickly perceive the intrusion sequence. This
allows the analyst to look not just at an IDS event, but
look at that event in the context of the effects of the event
on system activity and side effects. This context exists
today but requires manual effort to identify. By using the
relational model we can automatically identify this context
and provide it to the analyst, ideally improving accuracy
and efficiency, by removing the need to manually identify
relations and compiling the composite event view.

Figures 4 and 5 provide illustrations of how Walleye uses
the relational model to generate composite event views. In
the first illustration, we see a composite view of different
data srouces: p0f, Argus and Snort organized into a single
unit or group. In the second we show how we can use data
from across groups to provide a comprehensive overview of
an intrusion sequence.

Figure 4 shows the current representation of a flow.
From the image we can observer several features: (i) This
is a bidirectional ICMP flow, whose initiator is 10.0.1.13,
(ii) 2655 different alerts are collapsed into a unified pic-
ture (three different alerts launched 855 times each at the
right side of the picture), (iii) 877 packets where sent in
each direction during this flow and (iv) the OS fingerprint
is unknown for this connection. This chart combines infor-
mation from three different data sources: Argus, P0f and
Snort and presents them to the analyst in a related and
aggregated fashion.

Figure 5 shows the tracking of an intrusion sequence
across two honeypots. The process tree diagrams are au-
tomatically generated by walleye based on the host and
process data, and can also use to flow data to relate activ-
ity on multiple honeypots. In this visualization, we see 2
types of objects, processes and IDS alerts. Processes iden-
tified by the Host and PID columns followed by the list of
command names the process executed as. Processes which
at some point executed with root privileges have a solid
white background, those which are non-root have shaded
background on the row headers. IDS alerts are represented
as 2 row and typically longer rectangles, which display the
class of the alert and the specific alert. Also of note in the
graph is the directional arrows, these show the progression
of the incident.

The referenced graph was generated as a result of a
staged intrusion where we manually broke into our own
honeypots, as part of this we also preinstalled a few tools

5



Fig. 4. Flow abstraction as used by Walleye

Fig. 5. Example visualization of multi-data source intrusion sequence

to keep the graph sufficiently simple for illustrative pur-
poses. In the Figure 5 illustration we a intruder gain access
to Honeypot *.*.*.25 using a preinstalled bintty backdoor.
The intruder then used the open-too-ssl exploit to attack
the *.*.*.26 honeypot. We can see the point where the
intruder gained access to *.*.*.26 was from host *.*.*.25
process ID 6811 to host *.*.*.26 process ID 5648 and pro-
cess ID 5676. Once on the *.*.*.26 host the intruder ran
the ptr exploit which took advantage of a ptrace vulnera-
bility to gain root access. Once root access was gained, the

bintty backdoor was launched to provide remote access.

This visualization is primarily based on 2 data sources,
Sebek and Snort. It shows in a single visualization the se-
quence of events that occured during the intrusion. From
this visualization we can identify the exact point where
the intruder gained access to each host, which process was
exploited to gain root access and which processes on the
system were created by the intruder. While it does not pro-
vide the greatest level of detail, we feel that it does provide
a composite intrusion sequence view which will improve

6



overall comprehension.
In the Walleye interface this visualization is a clickable

image map. The analyst can then click on an element in
the graph to increase the level of detail. For a given process
the analyst can click on the icon and would see a summary
of system activity for that process, such as a log of all
keystrokes.

IV. Limitations

As any with implementation there are some limitations
on our apprach we will address them, focusing on the two
most important components of our system: Hflow and Se-
bek.

A. Hflow

The Hflow system is based upon a number of individual
components, the data collection tools, the Hflow daemon
itself, and the database. Hflow’s output is a relational rep-
resentation of the model and the benefits of this represen-
tation come at the price of complexity. Complexity leads
to increased failure probability due to the dependency of
many interacting parts. To handle the error rate and be-
cause not all failures have the same impact, we address the
effect of specific component failures.

Table II provides a of component failure impact. In this
graph the impact is defined as follows. High impact means
that the system has a total loss of ability to observe events.
Medium impact means we have lost a significant ability to
relate one data source to another, or that we have lost
on derived data source. Low impact means we have lost a
data source but that the data source was of a supplemental
nature. Variable loss means the impact is dependent on the
error which is continuous rather than discrete.

TABLE II

Component errors & impact

Comp. Error Resulting Loss Impact

Traf. Rec. crash slow path data High
p0f crash OS identification Low
Snort crash Intrusion Detection Low
Argus crash non-IDS flows Med
Sebekd crash All Host Data Med

correlation Proc/Flow Med
Hflow crash All fast path data High
libpcap pkt loss accuracy Variable

Looking back at the Hflow schematic, it is apparent that
the Hflow daemon is a single point of failure for the fast
path data and the traffic recorder is the single point of
failure for the slow path data.

Attack vectors represent scenarios where an intruder can
specifically cause a failure in a component. Many of these
attacks are essentially Denial of Service type attacks based
on resource starvation.

In the case of Hflow, efforts have been made to mitigate
the impact of such DoS attacks. Within Hflow there is a
buffer of currently active flow data. This buffer is required
to account for non-synchronous delivery of data from each
of the four data sources. Each time a flow entry is up-
dated a timeout value is updated, as these records go stale
they are purged from the buffer based on a defined timeout
value. Given that this buffer is inherently limited in size,
the most likely attack vector is to fill this buffer.

One approach is to create as many distinct flows in a
unit of time, assuming this doesn’t crash Argus, this would
potentially fill the Hflow flow buffer, to mitigate this risk,
Hflow has a parameter that defines a high water mark in
the form of number of active flows, when this number is
exceeded, Hflow will preferentially drop flows which which
do not exhibit a bidirectional flow of data.

As with all of the contributing components, future work
will be needed to understand Hflow’s operation envelope.
The use of connection rate limiting and bandwidth rate
limiting provides additional mitigation. Connection limit-
ing or bandwith rate limiting will bound the state creation
and thus the buffer needed by Hflow to avoid DoS to can be
precisely determined. DoS attacks would then be restricted
to libpcap based tools.

B. Sebek

As it relates to Sebek there are two limitations to our
approach.

On the current system we cannot observe raw sockets as
a result, if an intruder uses a user land IP stack which com-
municated with the operating system using a raw socket,
then we would be unable to correlate the process activity
to the network activity.

A second problem we have with Sebek is that we expect
the flow of execution to follow the expected process model.
For instance if a piece of malware begins to execute within
the kernel context we will be unable to monitor the system.
Further if a piece of malware is able to jump laterally from
one executing process to another[19], our ability to recreate
a meaningful process tree have to be reconsidered.

V. Previous Work

A. Previous Models and Data Fusion

Modeling of system behavior by the means of system
call monitoring have been studied by Forrest et al.[20] and
by Provos [21]. These efforts have focused on intrusion
detection and/or sandboxing. They provide evidence that
system call monitoring can be performed on operational
systems which an acceptable level of performance.

Process tree recovery through system call monitoring was
first expressed by King et al. [22][8] in the CoVirt sys-
tem. The features added to Sebek for this proposed GenIII
architecture are conceptually equivalent to those outlined
though the implementation details differ.

7



The IDS correlation objectives are very similar from
ours. As expressed by Hätälä et al. the function of cor-
relation is the: (i)Aggregation of related alerts, (ii) Cor-
relation of different information sources and (iii) Context
Correlation. In our system we have the three components,
but in our case correlation of different information sources
and context correlation are the same. The final objective
remains clear: we need to provide a better understanding
of the states the system went through during an intrusion.

B. Data Analysis

A popular tool for honeynet data analysis is the “Hon-
eynet security Console” [23]. This provides a solid example
of the data-centric non-relational honeynet data analysis.
The access method is uniform across data types, yet it is
lacking the ability relate data from different sources or to
create a composite representation of an intrusion event se-
quence. Although this tool has aided in comprehension, it
leaves room for improvement in the area of composite event
representation. We anticipate that tools such as this will
benefit the ideas outlined in this work.

VI. Future Work/Broader Impact

We feel that the fusion of multiple data sources into
a relational representation with a common access method
will facilitate a new generation of data analysis techniques.
These techniques will benefit from the ability to observe
an event in the context of its cause and its impact on the
honeynet system, and on the ability to use the relational
structure to automatically extract unidentified intrusion se-
quences from the raw data creating a repository of con-
firmed intrusions. Within network data, contextual aware-
ness has been used to improve IDS alert reliability and we
feel the same type of improvement can be made by pro-
viding context awareness which transcends both network,
host and process data.

Monitoring data might prove a useful addition to pro-
duction systems to facilitate incident response. The key
value of Sebek is its ability to record volatile system data.
This data allows us to identify all network connections file
and processes related to an incident, all of which exists
temporarily as state information within the operating sys-
tem. As this information is powerful for improving hon-
eynet data analysis, it should be equally useful for incident
response.

For non-research honeynets, this approach should be well
suited to increase the level of automation used in honey-
pots used to generate anti-virus signatures or intrusion sig-
natures. Maybe even create automated incident reports
in a open format such as the ones being developed by the
IETF-INCH group.

In our current implementation only the Linux version of
the Sebek client has been enhanced. we will be working
with developers to enhance the remaining version of Sebek

to provide he necessary socket and process tracking.

Another direction initially explored by d’Oray et al.[24]
is the integration of file system monitoring into Sebek.
The addition of file system monitoring into Sebek and ul-
timately into Hflow may provide a link to disk forensics.
We feel that with the addition of disk forensics data such
as that provided by tools like the Sleuth Kit[25] analysts
may be able to use volatile data to optimize the analysis of
persistent disk data.

References

[1] T. H. Project, Know Your Enemy. Addison-Wesley, 2nd ed.,
2004.

[2] N. Provos, “Citi technical report 03-1: A virtual honeypot frame-
work,” tech. rep., Center for Information Technology Integra-
tion, Univerity of Michigan, 2003.

[3] T. H. Project, “Know your enemy:genii honeynets.”
[4] “Netfilter homepage.” http://www.netfilter.org, 2005.
[5] M. Roesch, “Snort–lightweight instrusion detection for net-

works,” in Proceedings of LISA’99 Systems Admistration Con-
ference, 1999.

[6] T. H. Project, “Know your enemy sebek.”
http://project.honeynet.org/papers/sebek.pdf, November
2003. Last access: Feb 2005.

[7] V. Paxson, “Bro: a system for detecting network intruders
in real-time,” Computer Networks (Amsterdam, Netherlands:
1999), vol. 31, no. 23–24, pp. 2435–2463, 1999.

[8] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “En-
riching intrusion alerts through multi-host causality,” in Pro-
ceedings of the 2005 Network and Distributed System Security
Symposium (NDSS), February 2005.

[9] T. H. Project, “Know your enemy: Honeywall cdrom.”
http://project.honeynet.org/papers/cdrom/index.html, Feb
2005. Last access: Feb 2005.

[10] “Argus project,” 2004.
[11] “Rtfm: New attributes for traffic flow measurement,” 1999.
[12] “Framework for ip performance metrics,” 1999.
[13] M. Zalewski, “passive os fingerprinting tool.”

http://lcamtuf.coredump.cx/p0f.shtml, 2004.
[14] “Real-time network awareness.”

http://www.sourcefire.com/products/downloads/secured/sf RNA.pdf,
2004.

[15] R. Gula, “Correlating ids alerts with vulnerability information.”
http://www.tenablesecurity.com/images/pdfs/va-ids.pdf, 2002.

[16] M, “Cve-2002-0392.” http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2002-0392, 2002.

[17] E. Balas, “Honeynet data analysis: A technique for correlating
sebek and network data,” in Digital Forensics Research Work-
shop, June 2004.

[18] L. Spitzner, “Honeytokens: The other honeypot.”
http://www.securityfocus.com/infocus/1713, Jul 2003. Last
access: Feb 2005.

[19] P. Biondi, “Shellforge g2: Shellcodes for ev-
erybody and every platform.” http://www.cartel-
securite.fr/pbiondi/conf/shellforgeG2 csw04.pdf, 2004.

[20] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection
using sequences of system calls,” Journal of Computer Security,
vol. 6, no. 3, pp. 151–180, 1998.

[21] N. Provos, “Improving host security with system call policies,”
in 12th USENIX Security Symposium, USENIX, 2003.

[22] S. T. King and P. M. Chen, “Backtracking instrusions,” in Pro-
ceedings of the 2003 Symposium on Operating Systems Princi-
ples (SOSP), October 2003.

[23] http://www.activeworx.org/programs/hsc/index.htm.
[24] M. d’Orey Posser e Andrade Carbone and P. L. de Geus, “A

mechanism for automatic digital evidence collection on high-
interaction honeypots,” in Proceedings of the 2004 IEEE Work-
shop on Information Assurance and Security, pp. 1–8, IEEE,
2004.

8



[25] B. Carrier, “The sleuth kit homepage.”
http://www.sleuthkit.org/sleuthkit/, 2005. Last access:
Feb 2005.

9


