
1

Scan of the Month: Scan 32

Lutz Schildt
ls@mcb-bremerhaven.de

September 20, 2004

Contents

1. Introduction 2
2. Analysis 2
2.1 Question 1 3
2.2 Question 2 4
2.3 Question 3 4
2.4 Question 4 5
2.5 Question 5 6
2.6 Question 6 6
2.7 Question 7 6
2.8 Question 8 6
2.9 Bonus Questions 7
2.9.1 Bonus Question 1 7
2.9.2 Bonus Question 2 7

2

1. Introduction

This month’s challenge was to analyze a home-made malwary binary, in an effort
to reinforce the value of reverse engineering malware, and improve (by learning
from the security community) the methods, tools and procedures used to do it.

These are the tools I used:

IDA Pro 4.05 by DataRescue http://www.datarescue.com
OllyDbg 1.10 by Oleh Yuschuk http://home.t-online.de/home/Ollydbg
Hacker’s View 6.40 by SEN, Kemerovo unfortunately I do not have an URL for it

IDA Pro 4.05 is an Interactive Disassembler for pretty much most architectures
and executable formats with lots of nice features for Reverse Engineering Files
one does not have the sourcecode of.

OllyDbg 1.10 is a Win32 Debugger.

Hacker’s View 6.40 is a little outdated Version of an excellent HexEditor which is
capable of showing the opcodes corresponding to binary data.

2. Analysis

After downloading the binary, I verified the md5sum. I then started by taking a
look at the binary itself using Hiew to get a brief overview of what I’m dealing with.
The first step was to check the Section Table which shows 3 sections:

Section 1: JDR0 is 44kByte in size, none of the data is present in the binary itself.
Section 2: JDR1 is 16kByte in size, which is completely present in the binary itself.
Section 3: .rsrc is a 4 kByte standard section, containing resources like the icon,

some version information and the pretty small imports table.

Taking a look at the code portion starting at the entrypoint in Section 2, one can
pretty much figure out that Section 2 consists of compressed data and the needed
decompression code. The section names are not used in any common pe-
compression-tools which means the compression/decompression engine is likely
to be home-made aswell.

To analyse the binary using IDA I first needed to rebuild the missing parts of the
original binary: the real codesection and import section/table. As the file has the
decompression algorithm built in and I did want to safe some time, I used OllyDbg
and loaded the binary. Before letting the debugger execute any of the code of the
binary I took a closer look at the decompression code.

The algorithm starts at the entrypoint at 0x40FD20 and ends at 0x40FE78 with a
jump to the real entry point. The decompression code itself is rather simple and
not using any obfuscating techniques to “fool” disassemblers/debuggers. It
consists of 2 parts. Part 1 decompresses the compressed data and writes it into
Section JDR0 starting at 0x401000. At 0x40FE26 decompression is finished and

3

Part 2 of the loader begins. Part 2 is a small portion of code building the import
table for the real code at 0x401000.

I stopped at this point, to prepare a copy of the original executable. I added a
fourth Section to the copy which was going to be used to store a rebuilt import
section. Adding a new Section, I also had to adjust a bit of the PE-Header. I
started OllyDbg again, this time using the slightly modified Version of the binary.
The decompression portion of the loader was just as I needed it, the part building
the import table is what I needed to be a bit different. As I didn’t want to run the
malware code in the JDR0 section, I replaced the the jump to the real entrypoint
with a Call to ExitProcess to stop the process when I was finished. I set a
breakpoint at the end of the decompression part so I could check out part 2 with
real data which would make it easier. I let the process run until the breakpoint
which produces the missing codesection. Now I analysed part 2 and rewrote it’s
code in the paused process to generate a complete import section in my
previously added fourth section. I dumped codesection and import section into 2
files.

Using the two dumps I was able to build a third version of the binary which only
consisted of uncompressed codesection, resourcesection and importsection. The
datasection normally found in PE-Files was merged into the codesection by the
selfmade pe-compressor of the author which is not a problem at all. Using IDA
and the third rebuilt uncompressed version of the binary I could start analysing the
purpose and features of the malware allowing me to answer the questions of the
challenge.

2.1. Identify and provide an overview of the binary, including the fundamental

pieces of information that would help in identifying the same specimen.

The binary is compressed using a home-made pe-compressor. It consists of 1
empty section (JDR0), 1 section containing the loader and compressed code and
datasections (JDR1) and 1 resourcesection containing icon, versioninformation
and a small importtable (.rsrc). The way the compressor created the binary and
the loader decompresses it, this technique could corrupt some executables the
compressor/loader are used with as a part of the datasection will still contain parts
of compressed data after when the jump to the real entrypoint is executed. The
original binary was coded and compiled using Microsoft Visual Basic. Binaries
coded by the same author could most likely be identified using the sectionnames,
the decompression code and another small portion of the PE-Header containing
the texts “9.99” and “JDR!”, given the author doesn’t change those.

4

2.2. Identify and explain the purpose of the binary.

The binary enables the author to automatically update and control an unlimited
number of infected clients using a prepared webserver. The malware is started on
system startup and from then on queries the website once every 60 seconds by
default.

2.3. Identify and explain the different features of the binary. What are its

capabilities?

Download: The binary is able to automatically download files from the

configured website

Execution: The binary able to execute any file on the client, most likely

those previously downloaded.

Upload: The binary can upload any file to the webserver posting

Multipart-Formdata.

Screenshots: The binary is able to take screenshots.

Sleep: Tells the client to sleep for x seconds before executing the
next command

The client can be completely customized using commandline parameters to
change any default settings:

--server sets the main URL of the Website to be queried
--commands sets the name of the document to retrieve which will contain

commands to execute
--cgipath sets the path to the cgi-files for upload/download on the

webserver
--cgiget sets the name of the cgi-file used for uploading files to the

webserver
--cgiput sets the name of the cgi-file used for download files from the

webserver
--tmpdir sets the path of the temporary directory on the client for RaDa
--period sets the period of time to wait in seconds before the

commandscript is retrieved and executed the again
--cycles sets the number of times the script should be retrieved from the

webserver and then just exit
--help displays syntax information for the binary
--gui enables the built in GUI with buttons for Install, Uninstall,

Configuration, Usage, Retrieve commandscript and exit
--installdir Sets the path where to copy the binary on installation
--noinstall Starts the binary without adding it to

HKLM/Software/Microsoft/Windows/CurrentVersion/Run
--uninstall Removes the binary and turns off autorun on startup
--authors explained in detail when answering the Bonus Questions

5

2.4. Identify and explain the binary communication methods. Develop a Snort
signature to detect this type of malware being as generic as possible, so other
similar specimens could be detected, but avoiding at the same time a high
false positives rate signature.

The binary uses the HTTP protocol to communicate with a webserver, which
sends back a html document with html forms containing fields. The field names
contain the commands to execute and the field values contain the parameters
needed. The binary in this version understands 5 commands:

exe executes the command given as parameter

example: <input name=”exe” value=”calc”> would start the
windows calculator

get downloads the file given as parameter from the webserver

example: <input name=”get” value=”foo.baa”> would
download the file foo.baa from the the webserver
posting the filename in multipart-formdata to
download.cgi

put uploads the file given as parameter to the webserver posting it in

multipart-formdata to upload.cgi

screenshot takes a screenshot and safes it to the temporary directory of

RaDa in a file given as parameter

sleep waits for the number of seconds given as parameter

Here are 5 snort signatures to detect probable commands issued using html forms

name=”get”
alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"RaDa probable
download command"; content:"|6E 61 6D 65 3D 22 67 65 74 22|”; nocase;
flow:to_client,established;classtype:trojan-activity;)

name=”put”
alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"RaDa probable
upload command"; content:"|6E 61 6D 65 3D 22 70 75 74 22|”; nocase;
flow:to_client,established;classtype:trojan-activity;)

name=”sleep”
alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"RaDa probable sleep
command"; content:"|6E 61 6D 65 3D 22 73 6C 65 65 70 22|”; nocase;
flow:to_client,established;classtype:trojan-activity;)

name=”screenshot”
alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"RaDa probable
screenshot command"; content:"|6E 61 6D 65 3D 22 73 63 72 65 65 6E 73 68 6F
74 22|”; nocase; flow:to_client,established;classtype:trojan-activity;)

6

name=”exe”
alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"RaDa probable
execute command"; content:"|6E 61 6D 65 3D 22 65 78 65 22|”; nocase;
flow:to_client,established;classtype:trojan-activity;)

2.5. Identify and explain any techniques in the binary that protect it from being

analyzed or reverse engineered.

The only technique of real protection against reverse engineering used is the
compression of the code and data sections. If someone wanted to reverse
engineer a compressed binary file, he would need to rebuild the original binary or
at least a valid fully functional one that enables that someone to use a
disassembler like IDA. You need to have the code and data sections and the
import section working in case you want to use tools like IDA. In order to achieve
this you nearly always need to invest quite some amount of time to rebuild the
binary. Especially in this case where the author did not use one of the common
tools like UPX, PElite etc. for compressing the binary and the reverse engineer
has to rebuilt the binary manually.

Why the author used Visual Basic to code RaDa might have been because it is
mostly a lot easier to code, and harder to analyse/reverse engineer the binary
after compilation. Many people almost already give up when they see that the
binary was created using Visual Basic. But I would not really call that a technique
of protection against reverse engineering. It might stop a few people, but those
that need to analyse the binary will probably not care if it is Visual Basic or not.

2.6. Categorize this type of malware (virus, worm...) and justify your reasoning.

I would categorize this as a Trojan. It does not spread in any way nor does it infect
files or does any damage on it’s own. It can only be used after infection either
through a worm, or mail virus etc. In this version its only use can be to download
and install anything else the author needs.

2.7. Identify another tool that has demonstrated similar functionality in the past.

There are a lot of Trojans/Backdoors which can be remotely controlled using IRC-
Channels, download other binaries and execute them or upload data/files to
webservers. But this binary is the first one that I can remember that combines all
of this using just HTTP traffic.

2.8. Suggest detection and protection methods to fight against the threats

introduced by this binary.

In my opinion there are not really any new threats introduced by this binary.
Downloading and installing “extensions” or updates is a common feature amongst
rootkits for example, they all do have scripts that once a host has been
compromised, download and install other tools needed. Sending files/data, taking
commands etc. is also a common feature amongst RATs like IRCBots, Trojans,

7

Backdoors and the like. There is not much one can do to detect and protect
against such tools, except for doing what one should always be doing. Stay
uptodate with software updates, service packs and virus definitions, be suspicious
about any email attachement received and not to just run them because it’s
attached and the mail has an interesting text telling one to do that. The Solution is
in the binary itself “Security through obscurity is the key.” There is no protection
against a tool like this if it comes as an attachement and the receiver just
doubleclicks on it without being suspicious why someone he doesn’t even know
sent him an email asking if he was the one that sent this attachement to him.

2.9. Bonus Questions

2.9.1. Is it possible to interrogate the binary about the person(s) who
developed this tool? In what circumstances and under which
conditions?

It is possible to get information about the author(s). It is possible to add the
parameter “--authors” to the commandline. In that case the binary will check if
the os it is running on is inside a VMware session by checking the MAC-
Addresses of the Interfaces for VMnet specific MAC-Addresses and for the
presence of a registry key belonging to VMware tools which are installed on a
windows installation inside VMware. If it finds it is a real Windows installation it
is running on, it will display a message box with the following content:

“Authors: Raul Siles & David Perez, 2004”.

If not it will display “Unknown argument: --authors” and open an Internet
Exlorer Window containing RaDa Usage Information.

2.9.2. What advancements in tools with similar purposes can we expect in the

near future?

As I have already said, there are already a lot of other tools that are much
more powerful than this binary, with features that include selfpropagation,
processhiding and a lot more than 5 commands to be issued remotely. The
only thing I can imagine that would be a real advancement for such tools would
be polymorphic pe-encryption code which would make it nearly impossible to
detect the malware in any way because every version of the binary would look
completely different.

