Scan of the Month 33

Peter Kosinar { goober@mtos.ksp.sk)
December 3, 2004

Contents
1 Introduction
2 Analysis
2.1 Old header e
2.2 PEheader
2.3 Sections e e
2.3.1 7CODE” section 0 o v it e e e
2.3.2 T"DATA” section
2.3.3 7"NicolasB” section
2.3.4 7idata” sectiono e
2.3.5 SUMMATY oo e e e
2.4 Envelope
24.1 Dummy code L
2.4.2 Dummy exception blocks oL
2.4.3 The first version DummyKiller 0.
2.44 Encryption e
2.4.5 The second version DummyKiller 000000
2.5 Maincode e e e
2.5.1 Exception-al "goto”
3 Reconstructed code
3.1 Third version of DummyKiller. L oo
3.2 Simulated commands oL Lo
3.3 Final version of DummyKiller oo
3.4 Conclusion e e

Alternative methods

Answers

Final words

N

© 00 O ULUU i xRN N

1 Introduction

We assume that the reader is familiar with x86 architecture (registers, instruction set, etc.) and
basic concepts from Windows (e.g. abbreviations like RVA = Relative Virtual Address). The
protected binary was mostly analysed on a Linux system (except for the initial part where we
used HIEW and the final part, where we verified our findings).

2 Analysis

The executable 0x90.exe (294.912 bytes, MD5 sum: 7daba3c46a14107fc59e865d654fefe9) was
found on a WinXP system, so it would be reasonable to start with the assumption that it’s an
executable file in Portable Executable ([PE]) format. In order to verify this assumption, a very
nice tool named HIEW ([HIEW]) was used. It has (among many other useful features) ability
to display the headers of PE files in a form which is a bit more human-readable than a plain
hexdump. Unfortunately, like many other ”more-intelligent” tools (including [IDA], [OllyDbg]
and even objdump(1)...), it also uses certain values from the headers for displaying more useful
information. This works for "regular” binaries, however, the analysed binary was intentionally
protected against curious eyes and one part of its protection is intentional modification of certain
parts headers in order to prevent such tools from displaying useful output. Thus, the output of
such tools might be unreliable and HIEW was chosen as a compromise between ”comfort” and
”robustness”. Naturally, all the information provided by HIEW was independently verified by
looking at the plain hexdump.

2.1 Old header

PE files begin with a standard MZ header (also called "old” or DOS .EXE header!. The MZ
header begins with a two-byte signature (either ‘MZ’ or ‘ZM’, the later form is quite uncommon).
At offset 60 one can find a doubleword value (e_1fanew) which represents the offset (in bytes) of
the "new” (PE, in this case) header in the file. If the system loader finds that this offset points to
a valid PE header, it ignores the remaining bytes of the ”old” header and loads the file according
to the information from the new header. Otherwise, it loads it as a plain old 16-bit DOS .EXE
file (the details of this process aren’t important in our case). In our case, e_.1fanew=0x100 and a
valid PE header is present at this offset in the file.

2.2 PE header

The structure of PE header is discussed in greater details in [PE], so we’ll restrict our attention
only to the parts related to the analysed binary. PE header begins with a signature ‘PE’, followed
by many imporant fields? we’ll examine later. The values of these fields are summarized in table 1.
There are few bogus (intentionally obfuscated by the author) values in the header, namely Point-
erToSymbolTable, NumberOfSymbols (both of them are unimportant because the image is marked
as having no symbols), LoaderFlags (most of the bits are unimportant) and, most importantly
NumberOfRvaAndSizes. This number was (probably) originally meant to be used to denote the
number of so-called directories (their purpose will be exaplained later), so some programs (e.g.
HIEW) try treat it like that. However, real NT loader ignores this value and always considers the
number of directories to be 162. The header is followed by a list of the directories. Directories
are tables used for various purposes (e.g. the table of imports, exports, TLS, ...) and they are
described by two dwords — RVA* and the length of that particular table. In this binary, there
is only one such table — namely the table of imports — which is located at RVA 0x48000 and its
length is 190 bytes (we’ll have a look at it later).

1See _IMAGE_DOS_HEADER in winnt.h in MSVC

2See _IMAGE_NT_HEADERS in winnt.h in MSVC

3The constant IMAGE_NUMBEROF_DIRECTORY_ENTRIES in winnt.h

4Relative Virtual Address, the real virtual address can be obtained by adding ImageBase

DWORD | Signature 0x00005045 (‘PE’)

WORD Machine Ox14c (Intel 386)

WORD NumberOfSections 4

DWORD | TimeDateStamp 0x851c3163

DWORD | PointerToSymbolTable 0x74726144 (bogus value ”Dart”)

DWORD | NumberOfSymbols 0x00455068 (bogus value "hPE”)

WORD SizeOfOptionalHeader 224

WORD Characteristics 0x818f (Little Endian + 32bit + Stripped line
numbers, symbols, relocations + Executable)

WORD Magic 0x10b (a 32-bit optional header follows)

BYTE MajorLinkerVersion 2

BYTE MinorLinkerVersion 25

DWORD | SizeOfCode 0x200

DWORD | SizeOflInitializedData 0x45400

DWORD | SizeOfUninitializedData 0

DWORD | AddressOfEntryPoint 0x2000

DWORD | BaseOfCode 0x1000

DWORD | BaseOfData 0x2000

DWORD | ImageBase 0xde0000

DWORD | SectionAlignment 0x1000

DWORD | FileAlignment 0x1000

WORD MajorOperatingSystemVersion | 1

WORD MinorOperatingSystem Version | 0

WORD MajorImageVersion 0

WORD MinorImageVersion 0

WORD MajorSubsystem Version 4

WORD MinorSubsystem Version 0

DWORD | Win32VersionValue 0

DWORD | SizeOflmage 0x49000

DWORD | SizeOfHeaders 0x1000

DWORD | CheckSum 0

WORD Subsystem 3 (console application)

WORD DllCharacteristics 0

DWORD | SizeOfStackReserve 0x100000

DWORD | SizeOfStackCommit 0x2000

DWORD | SizeOfHeapReserve 0x100000

DWORD | SizeOfHeapCommit 0x1000

DWORD | LoaderFlags Oxabdbffde (bogus)

DWORD | NumberOfRvaAndSizes 0xdfffddde (bogus)

Table 1: Contents of PE header

2.3 Sections

At the offset SizeOfOptionalHeader from the Magic value® one can find the list of NumberOfSec-
tions=4 section headers. Each section header describes one section®, see table 2. The meaning of
the fields is quite intuitive — VirtualAddress is RVA where that particular section will be loaded (if
its Characteristics says that it should be loaded), Pointer ToRawData is offset in file where the data
of the section are located. The other interesting values are VirtualSize and SizeOfRawData. First
describes the size of the section in memory, the other on in the file. It’s important to know that
the loader takes smaller of these numbers and only loads that many bytes from the file. Thus, the
section ”NicolasB”, which intentionally contains bogus SizeOfRawData is, in fact, uninteresting

=)

BYTE]] | Name "CODE” "DATA” "NicolasB” | ”.idata”
DWORD | VirtualSize 0x1000 0x45000 0x1000 0x1000
DWORD | VirtualAddress 0x1000 0x2000 0x47000 0x48000
DWORD | SizeOfRawData, 0x1000 0x4500 Oxefefadff | 0x1000
DWORD | PointerToRawData, 0x1000 0x2000 0x47000 0x47000
DWORD | PointerToRelocations 0 0 0 0

DWORD | PointerToLinenumbers | 0 0 0 0

WORD NumberOfRelocations 0 0 0 0

WORD NumberOfLinenumbers | 0 0 0 0

DWORD | Characteristics 0xe0000020 | 0xc0000040 | 0xc0000040 | 0xc0000040

Table 2: List of sections

2.3.1 ”CODE” section

This section contains just a debug breakpoint ("INT 3”; opcode Oxcc) followed by four far jumps
which refer to four imported library calls (more details in part 2.3.4). Except for these 25 bytes,
this section is filled with zeroes.

2.3.2 ”"DATA?” section

Although the section name suggests something else, this section contains the actual code which
we are going to analyse, so we’ll deal with its contents in more details later.

2.3.3 "”NicolasB” section

Well, as we already mentioned, this section doesn’t seem to contain anything useful :-) (to be
honest, it overlaps with the ”.idata” section in the file, so if we blindly changed its Size OfRaw-
Data to 0, the application might be able to detect that this section wasn’t loaded and report
a tampered executable (or simply die). So, it contains a copy of the ”.idata” section, except
that the addresses of imported functions aren’t replaced by their real addresses in this section.
And well, it also contains a message and a signature from the author — at offset 0x470e0 in the
file ”You really thought you would find strings eh? ;-)” and at offset 0x47130 ”Scan
of the month coded by Nicolas Brulez / Digital River”.

2.3.4 ”.idata” section

This section contains the table of imported function. This is (in this case) a two-level table where
first level is a list of import descriptors”, each of them describing imports from one dynamic link-
able library and second level consists of lists of pointers to blocks describing actually imported

5i.e. at offset 0x1£8 in the file
6See _IMAGE_SECTION_HEADER in winnt.h in MSVC
7See _IMAGE_IMPORT_DESCRIPTOR in winnt.h in MSVC

functions®. The information about imports is summarized in table 3. Apparently, the binary prob-
ably uses (at least) four Windows API functions — GetCommandLine, GetTickCount, ExitProcess
and printf. Of course, it may later load some other functions®.

It may also be interesting to have a look at values originally stored at places where the ad-
dresses of imported functions are going to be stored. These are sometimes set by the compiler
to correspond to true addresses of API functions on the system where the file was compiled!?, so
they may be useful for tracing the version/kind of OS that was used to build the malicious binary.
Unfortunately, we didn’t possess enough different variants of kernel32.d11 so we weren’t able to

find what kind of system is Nicolas working with :-).

DWORD | OriginalFirstThunk | 0x4803c 0x48044

DWORD | TimeDateStamp 0 0

DWORD | ForwarderChain 0 0

DWORD | Name 0x4806¢ ("msvert.dll”) 0x48077 ("KERNEL32.d11")
DWORD | FirstThunk 0x48054 0x4805¢

Library Ordinal Name Location VA Original value
msvert.dll 740 printf 0xe28054 0x77c1186a
KERNEL32.d1ll 458 GetTickCount 0xe2805¢ 0x7c8092ac
KERNEL32.dll 258 GetCommandLine | 0xe28060 0x7c812c8d
KERNEL32.d11 175 ExitProcess 0xe28064 0x7c81lcaa2

Table 3: List of imported functions

2.3.5 Summary

The file headers were altered at (at least) five different places — the important changes are the
number of directories (NumberOfRvaAndSizes) and SizeOfRawData of one section. For example,
these changes prevented OllyDbg from loading the file (”Bad of unknown format of 32-bit file
...7) and IDA also didn’t like the file very much — e.g. my IDA produced ”chsize: no space left
on device” :-). Even HIEW produced a warning message ”Import data No free memory” while
reading the file.

Naturally, these modifications could be ”fixed” (e.g. by changing NumberOfRvaAndSizes to
16 and SizeOfRawData of third section to 0x1000), so the tools wouldn’t display warning/error
messages. However, such changes might not be ”safe” to perform — if the code included check-
sums or otherwise depended on integrity of the execultable, the results of our analysis might be
incorrect!!.

If the binary wasn’t specifically designed to be hard-to-crack, a good starting point would be
setting up a breakpoint at all four API functions imported by the binary and just running it.
However, this would not work with this binary!2.

2.4 Envelope

So, we are now ready to start playing with the real code of the binary. The code (section "DATA”)
is loaded at 0xde2000 and this location is also the entrypoint of the program. The first few instruc-
tions look quite normally (the disassembly was obtained using objdump --disassemble-all -M
intel 0x90-1.exe after replacing doubleword at offset 0x10c (PointerToSymbolTable) by zero):

8See _IMAGE_THUNK_DATA32 in winnt.h; although in this case our naming scheme doesn’t follow that file.

9Usually, this is accomplished by using LoadLibrary+GetProcAddress API calls or, more paranoidly, by manually
searching the address space of loaded libraries for particular exported function.

101t may be related to so-called ”bound imports”, which are not used in this case.

11 After all, we would be analysing a different executable :-)

12 At least not directly, though there are some tricks that can be used for circumventing the breakpoint-detection
code, see part 4

de2000: 60 pusha

de2001: €8 00 00 00 00 call 0xde2006
de2006: b&d pop ebp

de2007: 8b cb5 mov eax,ebp
de2009: 83 e8 06 sub eax,0x6
de200c: 81 ed 06 20 de 00 sub ebp, 0xde2006
de2012: 60 pusha

This code accomplishes three things — it saves all registers to the stack, sets EAX to point to the
entrypoint (0xde2000) and EBP to zero. The call-followed-by-pop technique was very common
in old parasitic viruses (which also needed to be position-independent). It is followed by one
more innocent instruction — pusha. Following this instruction, there is a mess of strangely-looking
instructions, many of them prefixed with segment/repeat prefixes (like gs, ss, repnz, ...). Such
a mess usually appears in regular (unprotected) binaries as a result of damage in the filesystem
:=) but in this case, it was intentionally added by the author. So, we’ll need to look closer at it.

2.4.1 Dummy code

Looking at the first few instructions, it becomes apparent that neither of the instructions does
any memory access (neither read, nor write), most of them just move values between registers.
They are prefixed with all strange combination of segment-register and/or repeat prefixes. These
prefixes are ignored for most instructions, in particular for all instructions used in this part of
the program. Following the execution flow further, we arrive at another kind of instruction —
unconditional jump, which jump exactly one byte ahead (eb 01). This is a common technique for
confusing disassemblers — if the byte immediately following the jump (which is jumped over and
thus not executed during the real execution) is disassembled and the corresponding instruction
is multi-byte, the jump will point into the middle of this instruction and the disassembly may
be quite confusing. However, more intelligent disassemblers (like IDA) know that this jump is
unconditional, so there is no point in disassembling the bytes following the jump (of course, unless
there is a jump which points to them). This technique is sometimes extended a little bit by a
”back-forward” jumps (which are sometimes able to confuse even IDA) — for example the following

16-bit code snippet!'?
53 push bx
bb eb 04 mov bx, 0xO4eb the operand is an unconditional jump
5b pop bx
eb fb jmp X where X is the second byte of the "mov” instruction
XX XX Some dummy byte, 0x9a or 0xe8 is a good choice
following code

Other common similar construction is ” jump-if-x” followed by ”jump-if-not-x” pointing to the
same location (e.g. jnz XXX; jz XXX. Clearly, the effect of this piece of code is the same as the
unconditional jump, but most disassemblers doesn’t seem to use this fact.

But back to the analysed binary...Following the code further, we’ll see just the mess of in-
structions which do not perform any memory access, until we come to 0xde2288, which contains
popa instruction:

’de2288: 61 popa ‘

Heureka! The whole block between 0xde2012 and 0xde2288 did NOTHING!4! This is a stan-
dard, though not very efficient, technique for repelling the analysers based on the assumption
that ”if there are loads of dummy code, nobody will be patient enough to trace through it” :-).
However, this assumption is not completely correct, because with modern tools, such dummy code
can be automagically skipped (as we’ll mention in part 4).

3Borrowed (without permission :-)) from an executable protected by executable protector HackStop
14To be exact, it is equivalent to pusha followed by popa; this sequence isn’t equivalent to nop because it modifies
a few bytes of memory just above the current ESP.

2.4.2 Dummy exception blocks

Now, we are looking at another pusha, this time at 0xde2289. However, this time, it’s not followed
by messy-looking instructions, the code looks quite "normally”:

de2289: 60 pusha

de228a: €8 48 00 00 00 call Oxde22d7

de228f: 8b 4c 24 Oc mov ecx,DWORD PTR [esp+12]
de2293: 83 81 b8 00 00 00 02 add DWORD PTR [ecx+184],0x2
de229a: 33 cO Xor eax,eax

de229c: 89 41 04 mov DWORD PTR [ecx+4],eax
de229f: 89 41 08 mov DWORD PTR [ecx+8],eax
de22a2: 89 41 Oc mov DWORD PTR [ecx+12],eax
de22ab5: 89 41 10 mov DWORD PTR [ecx+16],eax
de22a8: 89 41 14 mov DWORD PTR [ecx+20],eax
de22ab: c7 41 18 55 01 00 00 mov DWORD PTR [ecx+24],0x155
de22b2: 8b 81 b0 00 00 00 mov eax,DWORD PTR [ecx+176]
de22b8: 50 push eax

de22b9: O0f a2 cpuid

de22bb: 0f 31 rdtsc

de22bd: 2b 04 24 sub eax,DWORD PTR [esp]
de22c0: 83 c4 04 add esp,0x4

de22c3: 3d 00 00 Oe 00 cmp eax, 0xe0000

de22c8: 77 03 ja Oxde22cd

de22ca: 33 cO Xor eax,eax

de22cc: c3 ret

de22cd: 83 81 b8 00 00 00 63 add DWORD PTR [ecx+184],0x63
de22d4: 33 cO Xor eax,eax

de22d6: c3 ret

de22d7: 33 cO Xor eax,eax

de22d9: 64 ff 30 push fs:DWORD PTR [eax]
de22dc: 64 89 20 mov fs:DWORD PTR [eax],esp
de22df: O0f a2 cpuid

de22el: 0f 31 rdtsc

de22e3: 33 db Xor ebx,ebx

de22e5: 8f 03 pop DWORD PTR [ebx]

de22e7: 64 67 8f 06 00 00 addr16 pop fs:[0]

de22ed: 83 c4 04 add esp,0x4

de22f0: 61 popa

Now, let’s try to understand its purpose. . . First, it saves all registers to the stack, the execution
is transferred (via call, thus saving the address of next instruction to the stack) to 0x0xde22d7,
where it saves current content of FS:[0] to the stack and replaces it with current value of ESP.
Then, it performs cpuid followed by rdtsc. The later instruction retrives the value of 64-bit
counter named TSC which increases every clockeycle and stores it in EDX:EAX pair. Finally, the
code attempts to pop the contents of DS:[0] from the stack.

However, there is just a little catch — there is no accessible memory at that address. Thus,
the CPU will raise an exception which will be processed by the OS and so-called ”application
exception handler” will get called. How does it work? We won’t describe all the gory details of
exception handling under NT-based OS, just the way it’s used in this particular executable!®.

Segment register FS points to something called TEB'6, whose first entry is a doubleword
pointing to the last entry of linked list of exception handlers. If an exception occurs during the
execution of the application, actual state of registers is saved on the stack and the first handler

15Curious reader may find them at http://?/
16Thread Environment Block, detailed structure can be found at _NT_TIB in winnt.h in MSVC

in this list is called. It can then take appropriate action (like, informing the user that something
unexpected happend, or silently fix the problem, or cause the application to die, etc.). Finally, it
tells the system if it was able to process the exception. If not, next handler in the list is called, and
so on'”. Applications can easily register their own exception handlers by pointing that doubleword
to a block consisting of two doubleword-sized pointers — one points to the actual exception handler
and the other is a pointer to the tail of the list. It’s quite common to store these blocks on stack
and this is precisely what this application does. The head of the list is at FS: [0]. The stack
layout at the time the exception occurs is quite simple:

ESP, FS:[0] — | old contents of FS:[0] saved by push fs:DWORD PTR [eax]
Oxde228f saved by call
old contents of registers | saved by pusha

Thus, when the exception occurs, the code at 0x0xde228f will get called. Of course, the stack
layout at that time will be different — among many other things, it’ll contain the saved values
of all registers, some additional information about the exception, etc. Once again, although the
exact details are necessary for full understanding of what really happens'®, we’ll talk only about
the parts relevant to this particular case.

At ESP+12, there is a pointer to the saved context, which is loaded into ECX register. It points
to a large structure, which contains, all the saved registers. At offset 184 from the beginning is the
value of EIP which points to the place where the exception occured. So, the first instruction just
shifts EIP to point to the instruction following the one which (intentionally) caused the exception.
The next few instructions cleans up the contents of debug registers DRO-DR3, DR6, DR7 in order
to eliminate any hardware breakpoints. Then, original value of EAX is loaded (i.e. which was the
value returned by rdtsc before the exception occured), the cpuid/rdtsc combo is executed once
again and the old value of EAX is subtracted from the new. If the result is not too big (i.e. not
greater than 0xe0000), the handler returns, otherwise it shifts the saved EIP once again, this time
by a larger amount.

Under normal execution, the value in EAX will be smaller than 0xe0000, so the execution will
never change the value of EIP. However, if the code is executed under debugger, there will be
some additional overhead by the debugger which may cause this value to overstep the threshold
and the execution of the application will be redirected to some crazy place where it’ll probably
die (or cause an almost-endless loop of exceptions).

So, what the code essentially does — it moves EIP to point to the next instruction, clears
the debugging registers and verifies, whether it is executing at reasonable speed. Let’s have a
look at what happens once it returns from the exception handler. The execution will continue at
Oxde22e7, where it restores the original value of FS:[0], removes the address of exception handler
from the stack and finally restores all the registers which were saved by pusha. Thus, once again,
this code does almost NOTHING :-).

2.4.3 The first version DummyKiller

Looking at the following instructions, it becomes apparent that there will be many other occu-
rances of these two anti-curious-eyes tricks, so the time to develop our first AntiAntiDebug tool
has come. The approach demonstrated here is based on using a disassembler to skip these two
known types of dummy code and displaying only the interesting portions of the file (for alterna-
tive approach, see section 4). For this purpose, the BFD library ([BFD]) was used and a small
disassembler/deprotector was born.

Essentially, it is a finite state automaton (with one counter) which disassembles every instruc-
tion, checks if it is a popa/pusha/unconditional jump and changes it state accordingly. The counter
is used to keep track of the number of pusha-s found. If this number becomes equal to 2 (because
we need to ignore the pusha at the very beginning of the program), the code is assumed to be a
part of a dummy block. If it matches a known pattern (the dummy exception block described in

17 Again, exact defails can be found elsewhere.
18Look for _EXCEPTION_POINTERS, .EXCEPTION_RECORD and _CONTEXT (for x86) in winnt.h in MSVC.

part 2.4.2), it is skipped at once, otherwise, it is disassembled instruction-by-instruction and each
instruction is checked for memory-access!? and aborts in case it detects it. Unconditional jumps
are also processed, in order to avoid disassembling the instructions which are never going to be
executed. If the instructions aren’t part of the dummy block, they are disassembled and displayed.
The program which performs this ”de-dummyfication” is in genl.c file. WARNING: Do not try
to read or understand the program. It may cause serious damage to your mental and/or physical
health :-)

First part of program’s output (after removing the lines added by the program to show the
presence of dummy code and rewriting the value on first line to hexadecimal) is in table 4.

We already know the purpose of the first block of the code, the second (one-line) block is also
quite simple — it just stores the value of EAX (which holds the address where the code begins —
namely 0xde2000) to doubleword at Oxe26441. This is followed by three very similar blocks.

Let’s analyse first of them! 0xde100d points to the far jump instruction in ”CODE” section (see
part 2.3.1) which jumps to to the GetCommandLine API function. Then, it takes its argument
(i.e. the address of memory location, where the actual address of the API function is stored, in
this case 0xe28060) and dereferences it (thus obtaining the true address of the API function).
This value is then stored in EDI register, ECX is filled with 4, EAX with Oxcc (which is, not
very surprisingly, the opcode of debug breakpoint (int 3)). Finally, ECX bytes beginning at
EDI are scanned for value contained in AL. If it is not found (i.e. no breakpoint found on that
API call), the execution follows normally, otherwise it jumps to a random location (obtained by
reading the actual value of TSC :-)). This is the reason why putting a breakpoint at the API
function wouldn’t work (as we mentioned in part 2.3.5). On the other hand, if we put breakpoint
not to the first instruction, rather to a later one (which is more than 4 bytes from the beginning
of that API handler), we would have passed this check :-). The other two blocks check printf
and ExitProcess.

2.4.4 Encryption

Now, we are coming to something more interesting. The aforementioned code is followed by the
code in table 5 (again, the non-hexadecimal values were manually replaced by their hexadecimal
equivalents and adding a few lines which weren’t on the path followed by the automated tool but
which are nevertheless relevant).

This code looks like a loop (in fact, a ”for”-cycle), where EDI is the control variable of the
cycle. Its value is incremented by 1 in every pass of the loop and once it reaches 4, execution is
transferred to 0xde5423. In every iteration, the code loads ESI and EBX registers from tables
stored at 0xe26419 and 0xe2642d (EDI-th doubleword in the table). Both values are adjusted?’
by adding base address of the code (0xde2000). The value of EBX is then pushed to the stack.
The next call followed by pop sets EBX to the address of instruction immediately following the
call (in this case, 0xde540a). Finally, the execution is transferred to the code at location pointed
to by ESL

Naturally, we’ll need to verify whether this code returns back to this "loop” (otherwise, it
wouln’t be a loop :-), just something loop-like looking and attempting to fool us). So, let’s
examine the contents at 0xe26419 and Oxe2642d.

[e26419] [e2642d]
Original Adjusted | Original Adjusted
Oxdead 0x31000

0004440b | 00e2640b | fecebad48 | ffac7a48
000443£f6 | 00e263f6 | fe686eda | £f468eda
000443fe | 00e263fe | ££2d68f4 | 000b88f4
0004435b | 00e2635b | ££63f£58 | 00421£58

9The check is incredibly dumb, it just looks for the presence of ‘[’ in the disassembled string; the exception is
lea instruction, which is permitted to use it
20This description doesn’t follow the chronological order!

de2000: 60 pusha

de2001: e8 00 00 00 00 call 0xde2006

de2006: 5d pop ebp

de2007: 8b cb mov eax,ebp

de2009: 83 e8 06 sub eax,0x6

de200c: 81 ed 06 20 de 00 sub ebp, 0xde2006
de2603: 89 85 41 64 e2 00 mov DWORD PTR [ebp+0xe26441],eax
de2950: b8 0d 10 de 00 mov eax,0xdel100d
de2c2c: 8b 40 02 mov eax,DWORD PTR [eax+2]
de2efl: 8b 00 mov eax,DWORD PTR [eax]
de2f5b: 8b £8 mov edi,eax

de2fbd: b9 04 00 00 00 mov ecx,0x4

de31fa: b8 60 06 00 00 mov eax,0x660

de31ff: «c1 e8 03 shr eax,0x3

de3202: f2 ae repnz scas al,es:[edi]
de3204: 85 c9 test ecx,ecx

de3206: 74 04 je 0xde320c

de3208: O0f 31 rdtsc

de320a: 50 push eax

de320b: c3 ret

de3274: b8 01 10 de 00 mov eax,0xde1001
de3558: 8b 40 02 mov eax,DWORD PTR [eax+2]
de355b: 8b 00 mov eax,DWORD PTR [eax]
de37f1: 8b £f8 mov edi,eax

de3a90: b9 04 00 00 00 mov ecx,0x4

de3a95: b8 60 06 00 00 mov eax,0x660

de3a%a: cl1 e8 03 shr eax,0x3

de3d2f: f£2 ae repnz scas al,es: [edi]
de3d31: 85 c9 test ecx,ecx

de3d33: 74 04 je 0xde3d39

de3d35: O0Of 31 rdtsc

de3d37: 50 push eax

de3d38: «c3 ret

de4048: b8 13 10 de 00 mov eax,0xdel1013
de430b: 8b 40 02 mov eax,DWORD PTR [eax+2]
de430e: 8b 00 mov eax,DWORD PTR [eax]
ded4bcf: 8b £8 mov edi,eax

de4bdl: b9 04 00 00 00 mov ecx,0x4

de4bd6: b8 60 06 00 00 mov eax,0x660

de45db: c1 e8 03 shr eax,0x3

de4884: f£2 ae repnz scas al,es: [edi]
de4886: 85 c9 test ecx,ecx

de4888: 74 04 je 0xde488e

de488a: 0f 31 rdtsc

de488c: 50 push eax

de488d: «c3 ret

Table 4: First part of automatically de-dummyfied code

10

deb17d: 33 ff Xor edi,edi

deb17f: 47 inc edi

de5180: 8b b4 bd 19 64 e2 00 mov esi,DWORD PTR [ebp+edi+0xe26419]
de5187: 8b 9c bd 2d 64 e2 00 mov ebx,DWORD PTR [ebp+edi+0xe2642d]
deb3fe: 03 9d 41 64 e2 00 add ebx ,DWORD PTR [ebp+0xe26441]
de5404: 53 push ebx

deb405: e8 16 00 00 00 call Oxdeb5420

de540a: eb 01 jmp 0xdeb540d

deb40c: €8 dummy byte

de540d: 03 b5 41 64 e2 00 add esi,DWORD PTR [ebp+0xe26441]
deb413: ff e6 jmp esi

de5415: 83 ff 04 cmp edi,O0x4

de5418: 0f 85 61 fd ff ff jne Oxdeb17f

de54le: eb 03 jmp 0xdeb423

deb5420: 5b pop ebx

deb421: eb ea jmp 0xde540d

Table 5: Second part of automatically de-dummyfied code

The values in second column look like valid addresses, so our belief in the conjectured func-
tionality of the code in table 5 is strengthened. Let’s disassemble the code at the referenced

locations!

e2640b:
e26411:
e26418:

8d 85 23 54 de 00
81 04 24 cd 49 31 01
c3

lea
add
ret

eax, [ebp+0xde5423]
DWORD PTR [esp],0x131d9cd

This looks interesting! The first instruction sets EAX to 0xde5423 (which is exactly the
location, where the code in table 5 would jump after the loop, what a coincidence!), the second
does something strange to the value stored on stack and then returns. What was the value stored
on the stack? It was Oxffac7a48 and after adding 0x131d9cd, the result is Oxde5415, again a
value we expected! So, let’s have a look at the next piece of code!

e263f6:
e263fd:

81 04 24 3b cb5 97 01
c3

add DWORD PTR [esp],0x197c53b
ret

This piece is even more trivial than the previous — it just returns to Oxde5415. So, what about
the third?

e263fe: b9 38 0f 04 00 mov ecx,0x40£f38
e26403: 81 04 24 21 cb d2 00 add DWORD PTR [esp],0xd2cb21
e2640a: c3 ret

This one loads ECX with the value 0x40£38 and again, returns to Oxde5415. What about the
final one?

11

e2635b: 30 08 Xor BYTE PTR [eax],cl
e263bd: 40 inc eax

e263be: 49 dec ecx

e2635f: 85 c9 test ecx,ecx

e26361: 75 £8 jne 0xe2635b

e26363: 8d 85 le 54 de 00 lea eax, [ebp+0xdeb4le]
e26369: 80 38 cc cmp BYTE PTR [eax],Oxcc
e2636¢c: 75 04 jne 0xe26372

e2636e: 0f 31 rdtsc

e26370: 50 push eax

e26371: «c3 ret

e26372: e8 5c 00 00 00 call 0xe263d3

e26377: c7 dummy byte

e26378: 8b 7c 24 Oc mov edi,DWORD PTR [esp+12]
e2637c: 83 87 b8 00 00 00 02 add DWORD PTR [edi+184],0x2
e26383: 33 c0 Xor eax,eax

e26385: 8d 7f 04 lea edi, [edi+4]

e26388: ab stos es: [edi] ,eax

e26389: ab stos es: [edi] ,eax

e2638a: ab stos es: [edi] ,eax

e2638b: ab stos es: [edi] ,eax

e2638c: ab stos es: [edi] ,eax

e2638d: 66 b8 aa 01 mov ax,0xlaa

e26391: 34 ff Xor al,Oxff

e26393: ab stos es: [edi] ,eax

e26394: 8b 87 a8 00 00 00 mov eax,DWORD PTR [edi+168]
e2639a: 81 40 28 f0 a3 87 01 add DWORD PTR [eax+40],0x187a3f0
e263al: 8b 87 94 00 00 00 mov eax,DWORD PTR [edi+148]
e263a7: 50 push eax

e263a8: Of a2 cpuid

e263aa: O0f 31 rdtsc

e263ac: 2b 04 24 sub eax,DWORD PTR [esp]
e263af: 83 c4 04 add esp,0x4

e263b2: 3d 00 00 Oe 00 cmp eax,0xe0000

e263b7: 77 10 ja 0xe263c9

e263b9: 8b 87 a8 00 00 00 mov eax,DWORD PTR [edi+168]
e263bf: 81 68 28 33 6f eb 00 sub DWORD PTR [eax+40],0xeb6f33
e263c6: 2b cO sub eax,eax

e263c8: c3 ret

e263c9: 83 87 9c 00 00 00 32 add DWORD PTR [edi+156],0x32
e263d0: 2b cO sub eax,eax

e263d2: «c3 ret

e263d3: ff 04 24 inc DWORD PTR [esp]

e263d6: 64 67 ff 36 00 00 addri16 push fs:[0]

e263dc: 64 67 89 26 00 00 addri16 mov fs:[0],esp

e263e2: 60 pusha

e263e3: O0f a2 cpuid

e263eb: 0f 31 rdtsc

e263e7: 33 db xXor ebx,ebx

e263e9: 89 1b mov DWORD PTR [ebx],ebx
e263eb: 61 popa

e263ec: 64 67 8f 06 00 00 addr16 pop fs:[0]

e263f2: 83 c4 04 add esp,0x4

e263f5: «c3 ret

12

Whew! What a long code :-) The first part is a simple decryption loop — it xor-s ECX bytes,
beginning at EAX, with a repeating key. Second part is also quite simple — it just checks for
the presence of a breakpoint at Oxde541le, which is exactly the place where someone would put
a breakpoint if (s)he wanted to stop right after the EDI-loop (table 5). The last part is again
something exception-related. This time, however, there’s something new — the exception handler
doesn’t follow directly after the call, rather there is one dummy byte (the address pushed by the
call is incremented at 0xe263d3). And, the handler also contains code, which modifies the value
on the top of the stack (at 0xe2639a and 0xe263bf). Again, this code returns to 0xde5415.

2.4.5 The second version DummyKiller

After performing the decryption semi-manually, it becomes apparent that the code at 0xde5423 is
again filled with dummy pieces of code interspersed with exception blocks, just like the outermost
layer of the envelope. Thus, it’ll probably be useful to add the ability of decryption to our
automated tool. The amended version is in gen2.c file?!. So, after unpacking quite many layers
of the protection, we finally arrive to something resembling a real code at location 0xde8653.

2.5 Main code

Again, the main code is, just like the envelope, intermixed with dummy code, in order to make
the analysis more difficult. However, our automated tool is already able to get rid of a few forms
of such dummy code, so this is not a big problem. Thus let’s have a look at the de-dummyfied
code:

de8653: 68 3d ba el 00 push Oxelba3d

de86cO0: 68 2f 87 de 00 push 0xde872f

de872d: eb 1f jmp 0x00de874e

de874e: 81 34 24 30 58 41 48 xor DWORD PTR [esp],0x48415830 HAXO
de89fc: 8f 05 73 bc el 00 pop ds:0xelbc73

de8ccc: ¢c7 05 36 87 de 00 45 76 69 6¢ mov ds:0xde8736,0x6c697645 Evil
de8f79: c7 05 3a 87 de 00 20 48 61 73 mov ds:0xde873a,0x73614820 _Has
de920e: c7 05 3e 87 de 00 20 4e 6f 20 mov ds:0xde873e,0x206f4e20 _No.
de94aa: c7 05 42 87 de 00 42 6f 75 6e mov ds:0xde8742,0x6e756f42 Boun
de977c: c7 05 46 87 de 00 64 61 72 69 mov ds:0xde8746,0x69726164 dari
de99e9: c7 05 4a 87 de 00 65 73 20 21 mov ds:0xde874a,0x21207365 es.!
de9c9a: 8b 34 24 mov esi,DWORD PTR [esp]

de9c9d: 58 pop eax

Apparently, this is some kind of initialization routine. The doublewords at 0xde8736—
Oxde874a are filled with a message from the author: ”"Evil Has No Boundaries !” and the value
on the stack is xor-ed by "HAX0” 22. Except for this simple activity, the code initializes both ESI
and EAX to point to Oxelba3d and [0xelbc73] to be equal to 0xDE872F xor 0x48415830.

2.5.1 Exception-al ”goto”

Now we arrive to the nicest part of the code, which is shown in table 6.

The first part of this code can be symbolically rewritten as EDI=0xe1b991 [* (bytex*)ESI]
followed by EAX=* (byte*) (ESI+1). The second parts is once again an exception handler, just like
the ones we have already seen in part 2.4.2 (e.g. DR cleaning). However, there is an important
difference between these "new” handlers and those old ones. The old handlers returned to the
same place?3, whereas the new handlers intentionally return somewhere else. The new location is

21This one is even more sloppy about doing necessary checks; it was written in haste and for only one purpose —
unpacking this particular executable and nothing more

220r 0XAH, whichever you prefer. :-)

23well, almost; up to two skipped bytes

13

de9c9e: 0Of b6 06 movzx eax,BYTE PTR [esi]
de9f5d: 8b 3¢ 8591 b9 el 00 mov edi, DWORD PTR [eax+0xelb991]

dea213: 0f b6 46 01 movzx eax,BYTE PTR [esi+1]
deadb0: 60 pusha

deadbl: €8 34 00 00 00 call 0x00deadea

deadb6: 8b 4c 24 Oc mov ecx, DWORD PTR [esp+12]
deadba: 33 c0 XOr eax,eax

deadbc: 89 41 04 mov DWORD PTR [ecx+4],eax
deadbf: 89 41 08 mov DWORD PTR [ecx+8],eax
deadc2: 89 41 Oc mov DWORD PTR [ecx+12],eax
deadch: 89 41 10 mov DWORD PTR [ecx+16],eax
deadc8: 89 41 14 mov DWORD PTR [ecx+20],eax

deadcb: ¢7 411855010000 mov DWORD PTR [ecx+24],0x155

deadd2: 8b 81 b0 00 00 00 mov eax, DWORD PTR [ecx+176]
deadd8: 8b b9 9c 00 00 00 mov edi, DWORD PTR [ecx+156]

deadde: 8b 04 87 mov eax,DWORD PTR [edi+eax]
deadel: 89 81 b8 00 00 00 mov DWORD PTR [ecx+184],eax
deade7: 33 c0 xor eax,eax

deade9: c3 ret

deadea: 64 67 ff 36 00 00 addrl6 push fs:[0)

deadf0: 64 67 89 26 00 00 addrl6 mov fs:[0],esp

deadf6: 33 db xor ebx,ebx

deadf8: 8f 03 pop DWORD PTR [ebx]

64 67 8f 06 00 00 addrl6 pop fs:[0]

83 c4 04 add esp,0x4

61 popa

Table 6: Goto code

14

determined by the contents of EAX (which is stored at [ECX+176]) and EDI (stored at [ECX+156])
registers at the time when the exception occured. Specifically, the new EIP will be equal to
EDI[EAX]. Finally, the last piece of code will restore the stack and registers once the exception
handler returns. However, this ”last piece” is not necessarily the one which follows in memory
after the exception handler ! Instead, it’s at the place where the handler returns. Thus, all ”sub-
routines” that are jumped-to in this way (using this ”exception-al goto”) need to begin with such
short prologue.

Conclusion: This whole code is just an obfuscated way for jumping to a new location. The
new location will be 0xe1b991 [* (byte*)ESI] [* (bytex*) (ESI+1)].

3 Reconstructed code

3.1 Third version of DummyKiller

After adding the functionality of replacing the ”exception-al goto” by an equivalent piece of code
which doesn’t use exceptions (and naturally, replacing the prologue of functions) it became ap-
parent that the code works like this:

1. The program ”simulates” a CPU which has a very limited set of ”commands” (”instructions”
would be more appropriate but it would be too easy to confuse with instructions of real CPU).
This CPU has a set of 6 registers which we’ll call Ry—R5 which are stored at 0xde8736. The
last register (R5) also serves one other purpose — it roughly corresponds to the Z(ero) flag
in EFLAGS.

2. ESI is ”instruction pointer” — it points to actually processed in instruction in the program.
Initially, it points to Oxelba3d.

3. The simulated CPU also has a stack of (unlimited) length and random-access memory.

4. At 0xelb991 is a table of ”basic commands” indexed by pairs of bytes (first byte selects one
subtable, second byte picks certain entry from that subtable). Thus, another useful feature
was added to DummyKiller — it’s called on each function separately, in order to clean up as
much dummy code as possible. The resulting program is in gen3.c?%.

3.2 Simulated commands

Commands will be described as n-tuples of bytes. First two bytes are always the opcode, the
meaning of other bytes varies from command to command. Notational convention: [ABCCCCDD]
means that there are four different fields in this instruction — A, B (both one byte long) and dword
CCCC followed by word DD. These symbolic names are usually used in the desctiption the that
particular instruction. [12ABC] denotes that the instruction starts with bytes 1, 2 followed by any
three bytes.

[00AAAA] | PUSH Imm32

Pushes (AAAA xor 0x37195411) to the stack.
[DIAAAA] [PUSH Imm32

Pushes (AAAA + 0xadd01337) to the stack.
[02A] | PUSH Reg

Pushes register (A xor 0x47) to the stack.
[03A] | POP Reg

Pops register (A xor 0x66) from the stack.

[04A] | AdjustESP
Removes (A xor 0x45) bytes from stack.

24Boasting: after running this program, a new executable 0x90-2. exe will be created, which should be functionally
equivalent to the original, and moreover, it’ll be Win98 compatible which the original wasn’t :-)

15

[10(?)] | Does not work(?)

Attempts to add two topmost values on the stack, removes them from the stack and pushes
back the result. Uses self-modifying code and shares big part of code with following two
commands. Due to some strange stack manipulations performed by the common part, this
function does not seem to work.

[11(7)] | Does not work(?)

Attempts to xor two topmost values on the stack, removes them from the stack and pushes
the result. Uses self-modifying code and shares big part of code with previous and next
commands. Due to some strange stack manipulations performed by the common part,
this function does not seem to work. In fact, the pointer to the handler in the table of
commands is one byte off :-)

[12(7)] | Does not work(?)

Attempts to subtract two topmost values on the stack, removes them from the stack and
pushes the result. Uses self-modifying code and shares big part of code with previous two
commands. Due to some strange stack manipulations performed by the common part, this
function does not seem to work.

[13ABC] | XOR Mem, Reg

Depending on the value of B, xor-s the byte(0)/word(1)/doubleword(2) at location pointed
to by register Ro by lowest byte/word/doubleword of register Ry4.

[14ABBBB] | ADD Reg32, Imm32

Adds BBBB to Rp_3. If the result is non-zero, Ry is set to 1, otherwise to 0.

[L5ABBBB] | SUB Reg32, Imm32

Subtracts BBBB to Rg_s. If the result is non-zero, Rj5 is set to 1, otherwise to 0.

[L6ABBBB] | AND Reg32, Imm32

And-s Rp_5 with BBBB. If the result is non-zero, Rs is set to 1, otherwise to 0.

[17ABBBB] | OR Reg32, Imm32

Or-s Rp_4 with BBBB. If the result is non-zero, Ry is set to 1, otherwise to 0.

[1ISABBBB] | XOR Reg32, Imm32

Xor-s Rg with BBBB. If the result is non-zero, Rj5 is set to 1, otherwise to 0.

[19ABBBB] | ADD Reg32, Reg32

Adds contents of Rg_3 to contents of R4_1. If the result is non-zero, Rs is set to 1,
otherwise to 0.

[1aABBBB] | CMP Reg32, Reg32

Compares contents of Rp_1 to contents of Ra_o. If the result is non-zero (i.e. inequality),
R5 is set to 1, otherwise to 0.

16

[20] ‘ Finish

This function jumps to the address pointed to by doubleword at Oxelbc73 xor-ed with
‘HAXO0’. As we know from part 2.5, the value stored at this location is 0xde872f xor-ed
with ‘HAXO0’. Therefore, these two xor-s cancel out and this function jumps to Oxde872f.
At that location, there is a short routine which just calls ExitProcess API function with
argument 0. The pedantic reader probably noticed that we have no guarantee yet, that
the contents of Oxelbc73 won’t change during the execution. That’s true; but as we will
see later, this ”conjecture” about the behaviour of this function is actually correct.

[21AAAA] | API

Calls API function whose handler is at location AAAA+0Oxfea731de. Returned value is
saved to Ry, if the return value is non-zero, Ry is set to 1, otherwise to 0.

[22AAAAB] | MOV Reg32, Imm32

Sets Rg to AAAA+Oxaefde04.

[23A] | DEC Reg32

Decrements R 4, if it becomes zero, sets R5 to 0, otherwise to 1.
[24A] \ INC Reg32

Increments R4, if it becomes zero, sets Rs to 0, otherwise to 1.
[25A] \ ZERO Reg32

Sets R4 and Rs to zero.

[26ABB] ‘ MemChr

Searches BB bytes of memory starting at location pointed to by Ry for byte with value A.
If found, Ry will be set to point to it, otherwise Ry is set to 0. Interestingly enough, Rs
is NOT set to 1 if the byte was found.

[27] | INT 3

Calls INT 3.

[28AB] | Mov Reg32, Mem32

Register Rp will be set to the value of doubleword at location Ry4.

[29A] | BSWAP

Real register EAX will be set to the bswapped (endian-reversed) contents of register R 4.
[2aAB] | Mov Reg8, Mem32

Register Rp will be set to the value of byte at location R 4.

[2bAB] | Mov Regl6, Mem32

Register R will be set to the value of word at location R4.

[30AAAA] | StackCmplJe

Compares two topmost doublewords on the stack, if they are equal, instrution pointer
ESI is set to AAAA-0x31337, otherwise its unchanged. Those two doublewords are then
removed from the stack.

[40AAAA] [JMP Immed32

Sets instruction pointer ESI to AAAA.

[A1AAAA] ‘ JNZ Immed32

Sets instruction pointer ESI to AAAA+0Oxelba3e if R5 is non-zero . The "mysterious”
added number is just the address of the beginning of the program, plus 1.

[42AAAA] ‘ JZ Immed32

Sets instruction pointer ESI to AAAA+0Oxelbadl if Ry is zero. The "mysterious” added
number is just the address of the beginning of the program, plus 4.

17

[FOAAAA] ‘ CALL Immed32
Saves actual instruction pointer (increased by the length of current command) and proceeds
to execute at AAAA.

[51] \ RET
Restores instruction pointer from stack; used for returning from a call.

3.3 Final version of DummyKiller

Now, we are (almost) ready to analyse the code. The final part — a disassembler for the simulated
CPU was added to the our little proggie and the program was disassembled. Almost :-(. Although
the first few instructions looked OK, the disassembling stopped very soon because the rest of the
code was encrypted using a simple XOR, cipher executed on the simulated CPU (the addresses are
relative to the beginning of the code):

000: | R3 = 020e
007: | PUSH elba65

00d: | POP RO

010: | R2 = 0053

017: | XOR [RO], BYTE(R2)
Olc: | RO++

01f: | R3--

022: | JNZ 0017

This loop xor-s 0x20e bytes beginning at Oxelba65 (which corresponds to the relative address
0028) by 0x53. Okay, after adding one trivial cycle to the DummyKiller, we were finally able to
look at the code.

18

028: | R1 = 5cc80e31
02f: | API3 GetCommandLine

035: | MemChr (RO, ’\x20’, 0x255) | Maybe this should have been 255 decimal?
03a: | JZ 0132

040: | R2 = [RO]

044: | R2 += 1d9bdc45
04b: | R1 += 74519745
052: | R2 -= ad4bdfe2
059: | R1 += deadbeef

060: | R2 += 68656¢c6¢C hell
067: | R1 —= 17854165

06e: | R2 -= 41776169 Awai
075: | R1 += 73686f77 show
07c: | R2 += 69747320 its.
083: | R1 —= 206e6£20 _No.
08a: | R2 += 64726976 driv
091: | R1 += 6d657263 merc
098: | R2 —-= 6e757473 nuts
09f: | R1 -= 79212121 ylill
0a6: | R2 -= 65683f21 eh?!

Oad: | R2 &= dfffffff
Ob4: | PUSH R2

Ob7: | PUSH R1

Oba: | StackCmpJe 00c9
0cO0: | R3 =0

0c3: | JZ 0132

132: | PUSH 0000

138: | PUSH elbc13 reference to strings at relative offset 01d6:
”Please Authenticate\n”
13e: | APIO printf

144: | ESP += 8
147: | Finish

This part of code is quite simple — it calls GetCommandLine(), finds the first space in it,
and loads the first doubleword into R,. Then, it performs a few mysterious calculations with
registers Ry and Rs (some of the used constants correspond to readable text — e.g. ”show no
mercy!!!” | etc.). The results of these calculations are then compared and if they are not equal,
the execution continues at 0132. There, a call to printf() is made, which displays the string
”Please Authenticate\n” and the execution is terminated by a call to ExitProcess(0). Thus, we
can calculate the value which must be present in the first doubleword of the command line if we
don’t want the program to terminate with a request for authentication. There are two possible
values — "1D3N’ or "1D3n’ (because of line Oad).

19

0c9:
Occ:
0d3:
0d6:

Oda:
0dd:

0e0:
Oe3:
0e9:
Oec:
0£3:
0f6:

Ofb:
Ofe:
102:
109:
10d:
111:

149:
150:
153:
156:
15d:
160:
167:
16e:
172:

RO++

RO += 0002
RO++

R1 = Word [RO]

PUSH R1
POP R2

PUSH RO

PUSH d8360d

POP RO

RO += 98548

RO--

XOR [RO], WORD(R2)

POP RO

R2 = Byte [RO]

RO += 0002

R1 = Byte [RO]

R2 += R1

Call 0149 (absolute el1bb86)

R1 = 004c

R1++

R1++

R1 += 0005
R1--

R1 -= 0004
R2 -= 005a
R1 7= R2
JNZ 0132

Ry now contains fifth and sixth byte of com-
mandline

R5 also contains fifth an sixth byte of the com-
mandline

Ry=0xe1bbb4
Word at Oxe1bbb4 is xor-ed by fifth and sixth
byte of the commandline

Ry=commandline[5] (counting from 1)

R;=commandline[7]

Ry = commandline[5]+commandline[7]

offset corresponding to line 117 is saved on
stack

This part of the code performs several interesting actions. First, it xor-s a word somewhere in
the region which was decrypted by the first xor-loop. Thus, the code (running on the simulated
CPU) is even self-modifying! Then, the fifth and seventh byte of the commandline are added and
the resulting value must be equal to 0xa8 (again, there is some add/subtract magic performed at

lines 149-167). Okay.

20

178: | RO—-

17b: | R2 = Byte [RO] Ry=commandline[6]

17£: | RO += 0002

186: | R1 = Byte [RO] Ry=commandline[8]

18a: | R2 += R1

18e: | R2++

191: | R2 -= 004e Ry=commandline[6]+commandline[8]-0x4d

198: | PUSH e0dd64
19e: | POP RO

lal: | RO += deac
1a8: | RO++ Ry = Oxelbc11; correponds to relative offset 1d3
lab: | XOR [RO], BYTE(R2)
1b0: | R3 = 0049

1b7: | PUSH elbc2a

1bd: | POP RO

1c0: | R2++

1c3: | XOR [RO], BYTE(R2) | Another xor-loop!
1c8: | RO++

lcb: | R3—-

1ce: | JNZ 01c3

This part is the most interesting — again, it performs some numerical woodoo and xor-s another
byte in the code (this time, the byte at location 1d3 is xor-ed by (commandline[6]+commandline|[8]-
0x4d)). Finally, it xor-s 73 bytes beginning from Oxelbc2a with the value of
(commandline[6]+commandline[8]-0x4c).

Following this part, the code is once again uncomprehensible. After all, its first byte is xor-ed
by a constant depending on the input given on commandline, so why should it be comprehensible
without correct input? :-) Thus, to be able to analyse the code further, we’ll need to find the
right value. . .

How long can the next command(s) be? We already know that at the offset 1d6, there is the
string "Please ...” and it’s highly unlikely that it’ll be a part of the code. Therefore, we have
just two bytes for the command which should get us to some other place. How many two-byte
commands do we have? The answer is simple — just 3. Moreover, we know that the second byte
of the command is 0x01, because only the first byte is xor-ed. Thus, the only possible command
is "RET” (opcode 0x05, 0x01). In other words, (commandline[6]4+commandline[8]-0x4d) = 0x05
xor 0x47 (the original value of the xor-ed byte). Therefore, (commandline[6]+commandline[8]) =
0x8f. Moreover, we also know the constant the data are xor-ed by 0x43. After performing the
xor, something interesting appears, so apparently, we are on the right track. Let’s analyse the
remaining part of the code!

Once the "RET” command is performed, we are back in the main code — namely, at line
117. Unfortunately, the command on this line is garbled as well (because of the xor performed at
line 0f6). Let’s repeat the analysis we performed in previous paragraph but this time backwards.
We'’ve already analysed the code at offset 132, so we’ll try to go back from this location and
use the fact that opcodes are very small numbers and that commands are at most 7 bytes long.
The last four bytes of this region are way too big, so if there is a command, then it must start
at offset 12c. Looking at the opcode, it would need to be an unconditional jump to address
0xf2f6dcd7+0xdeadead=0xe1bb84, which sounds quite reasonable. Proceeding in this manner,
we’ll obtain following piece of code:

11a: | PUSH R3
11d: | PUSH elbc2a | reference to the interesting data we mentioned before
123: | APIO printf

129: | ESP += 8
12c: | JMP 0147

21

A logical choice for the first command would be ” R3=0" (i.e. opcode 0x02, 0x05)25. So, we’ll
assume that this is the intended command and using therefore, we’re able to calculate fifth-to-
eighth bytes of the commandline — "EGcH”.

Alternatively, we could have brute-forced the few valid opcodes which could have been a part of
the first command and see, if the resulting code looks reasonable. But I hate brute-force :-).

3.4 Conclusion

If the binary is executed with a commandline ”1D3NEGcH” (and with some others as well), it’ll
present a message: "Welcome. ..\nExploit for it doesn’t matter 1.x Courtesy of Nicolas
Brulez”.

4 Alternative methods

As you have probably noticed, the described method is rather slow and clumsy. There are some
faster methods — for example, if owned the IDA disassembler, we could use the its integrated IDC
language to write a script which would remove the dummy code and some other irrelevant pieces.
On the other hand, it wouldn’t be as much fun as analysing a Windows binary on Linux :-).

If we were on Windows machine, there would be a very easy way for passing through the
outer envelope — we would just modify the API functions imported by this binary from ker-
nel32.dll/msvert.dll in such way that the execution would be stopped once that particular API
gets called (of course, not by placing a breakpoint at the beginning of the API function :-); this
would be detected by the binary), e.g. by replacing the first instruction by a jump to our piece of
code in some unused portion of the library’s data space.

If we were brave enough, we could also write our own loader of Windows libraries for Linux
(which is quite easy to do), load the library, set all of its memory pages to be unreadable/unwritable
and execute it. Once it would perform any memory access, we could decide whether it was an
important instruction or a part of the dummy code (e.g. the leading pusha). In the first case, it
would be reported, in second it would be silently executed. Naturally, this approach would also
require emulation of exceptions (which is not very difficult as we don’t need full emulation, just
the parts used by this binary) and some API’s (again, not a very difficult task for a binary which
calls 3 APT’s alltogether). This way, we would be able to see the interesting parts of the code
without intervening blocks of dummy code.

5 Answers

1. e PE headers modification
e Many Dummy code
e Many exception handlers which measured the elapsed time
e Multiple layers of encryption
e Simulated CPU
e Exceptions used as "goto”’s.
e Self-modifying simulated(!) code
e Code execution depending on the input

2. I'm not sure which method of protection does the author refer to but probably it was the
simulated CPU. If so, the description can be found in previous paragraphs.

25 Although it seems unnecessary because R3 was zero when the xor-loop finished

22

3. A tool was developed, which effectively removes the protection and translates the simulated
code into more readable form (on the other hand, it was constructed in rather ad-hoc manner,
so it’s very far from being a true "unpacker” for this protection).

4. I personally would prefer using IDA (unfortunately, I don’t own a copy of this great tool),
where one could write an IDC script which would skip the dummy code, perform the de-
cryption and many additional things (or even write a disassembler module for the simulated
CPU :-)). From other tools, OllyDbg would probably work as well, because of its plugins
architecture (again, one could write a plugin for skipping the dummy pieces of code).

5. Well, as the message says, it’s an exploit for ... ah, it doesn’t matter :-) If this was a real
malicious binary, it could have been e.g. exploit for some vulnerability or, it could be a
binary left on a compromised system, in order to attract attention of the forensic analyst
and distract him from more important stuff.

6. The binary expects authentication string on the commandline. Only first 8 bytes of the
commandline are important. The details are described in previous paragraphs, it was found
that e.g. the string "1D3NEGcH” works.

Bonus There are many methods for making the binary harder to analyse. For example, one could use
more ”intelligent” dummy code (look for the description of Level3 virus from old DOS times
and/or for mutation libraries like MtE, or newer KME, etc.), online decryption/encryption
of executed pieces of the code (i.e. only the currently executing piece of code would be visible
and other pieces would be decrypted by a checksum of the remaining ones), checksumming
of parts of the code and using these checksums for decisions, longer pieces of executed code
when the debugger/tracer is detected (i.e. do not die immediately, perform some decryption,
encryption and then jump to some strange place), etc. 1 think this should be enough, otherwise Nicolas

Armadillo protector might soon become too complex to remove :-).

References

[HIEW] Hacker’s View, used version 6.11 (the last freeware version)
http://www.serje.net/sen/

[PE] Portable Executable
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndebug/html/msdn_peeringpe.asp

[IDA] Interactive Disassembler, http://www.datarescure.com/

[OllyDbg] OllyDbg, used version 1.10
http://home.t-online.de/home/011lydbg/

[BFD] Binary File Descriptor library
http://www.gnu.org/software/binutils/manual/bfd-2.9.1/bfd.html.

6 Final words

Sorry for the poor English and even worse code :-).

23

